Answer
Verified
396.8k+ views
Hint: When haloalkanes with $\text{ }\beta -\text{ }$ hydrogen atoms are boiled with an alcoholic solution of potassium hydroxide, they undergo the elimination of hydrogen halide $\text{ }\left( \text{HX} \right)\text{ }$ resulting in the formation of alkenes. These reactions are known as the dehydrohalogenation or $\text{ }\beta -\text{ }$ elimination reactions. The major product is obtained by Saytzeff’s rule.
Complete step by step answer:
When haloalkanes with $\text{ }\beta -\text{ }$ hydrogen atoms are boiled with an alcoholic solution of potassium hydroxide, they undergo the elimination of hydrogen halide $\text{ }\left( \text{HX} \right)\text{ }$ resulting in the formation of alkenes. The general reaction of the dehydrohalogenation of the haloalkanes is as shown below,
These reactions are called the $\text{ }\beta -\text{ }$ elimination reactions because the hydrogen atom present at the $\text{ }\beta -\text{ }$ position of haloalkanes (i.e. at the carbon atom next to that which carries the halogen) is removed.
a) Ethyl bromide reaction with alc.$\text{ KOH }$:
The ethyl bromide reacted with the alcoholic potassium hydroxide $\text{ KOH }$. Here, bromine (halogen group) is at the $\text{ }\alpha \text{ }$ position and hydrogen is at the $\text{ }\beta \text{ }$ position. When boiled with
$\text{ KOH }$, hydrogen atom transfers its electron pair to the adjacent carbon-carbon bond, and bromide is removed from the molecule. This forms a double bond between the alpha and beta carbon atom and gives ethane as the product.
Thus, ethyl bromide on reaction with alcohol $\text{ KOH }$ gives ethene.
b) 2-chlorobutane reaction with alc.$\text{ KOH }$:
The 2-chlorobutane reacts with the alcoholic potassium hydroxide $\text{ KOH }$. Here, chlorine (halogen group) is at the $\text{ }\alpha \text{ }$ position and hydrogen is at the $\text{ }\beta \text{ }$ position. When boiled with
$\text{ KOH }$, hydrogen atom transfers its electron pair to the adjacent carbon-carbon bond, and bromide is removed from the molecule. This forms a double bond between the alpha and beta carbon atom and gives ethane as the product.
The 2-chlorobutane has the chloro group at the second carbon atom thus there are two $\text{ }\beta \text{ }$ positions. In the case of haloalkanes which has more than one $\text{ }\beta -\text{ }$ position can eliminate the hydrogen halide in two different ways, then that alkene will be preferred in which carbon atoms joined by the double bond are maximally alkylated. This rule is called the Saytzeff’s rule.
Thus, 2-chloro butane on reaction with alcohol $\text{ KOH }$ gives 2-butene as the major product. This is because the double-bonded carbons are linked to two methyl groups thus it is highly alkylated compared to 1-butene.
Note: Note that, if the substituted alkene formed during the elimination is capable of showing the cis-trans isomerism, then trans –alkene is always preferably formed as the major product because of its greater stability. For example here major product 2-butene exists in two isomers cis and trans and trans-isomer will be greater in amount. Thus we can say that $\text{ }\beta -\text{ }$ elimination of secondary halide results in three product major product (cis + trans isomers) and a minor product.
Complete step by step answer:
When haloalkanes with $\text{ }\beta -\text{ }$ hydrogen atoms are boiled with an alcoholic solution of potassium hydroxide, they undergo the elimination of hydrogen halide $\text{ }\left( \text{HX} \right)\text{ }$ resulting in the formation of alkenes. The general reaction of the dehydrohalogenation of the haloalkanes is as shown below,
These reactions are called the $\text{ }\beta -\text{ }$ elimination reactions because the hydrogen atom present at the $\text{ }\beta -\text{ }$ position of haloalkanes (i.e. at the carbon atom next to that which carries the halogen) is removed.
a) Ethyl bromide reaction with alc.$\text{ KOH }$:
The ethyl bromide reacted with the alcoholic potassium hydroxide $\text{ KOH }$. Here, bromine (halogen group) is at the $\text{ }\alpha \text{ }$ position and hydrogen is at the $\text{ }\beta \text{ }$ position. When boiled with
$\text{ KOH }$, hydrogen atom transfers its electron pair to the adjacent carbon-carbon bond, and bromide is removed from the molecule. This forms a double bond between the alpha and beta carbon atom and gives ethane as the product.
Thus, ethyl bromide on reaction with alcohol $\text{ KOH }$ gives ethene.
b) 2-chlorobutane reaction with alc.$\text{ KOH }$:
The 2-chlorobutane reacts with the alcoholic potassium hydroxide $\text{ KOH }$. Here, chlorine (halogen group) is at the $\text{ }\alpha \text{ }$ position and hydrogen is at the $\text{ }\beta \text{ }$ position. When boiled with
$\text{ KOH }$, hydrogen atom transfers its electron pair to the adjacent carbon-carbon bond, and bromide is removed from the molecule. This forms a double bond between the alpha and beta carbon atom and gives ethane as the product.
The 2-chlorobutane has the chloro group at the second carbon atom thus there are two $\text{ }\beta \text{ }$ positions. In the case of haloalkanes which has more than one $\text{ }\beta -\text{ }$ position can eliminate the hydrogen halide in two different ways, then that alkene will be preferred in which carbon atoms joined by the double bond are maximally alkylated. This rule is called the Saytzeff’s rule.
Thus, 2-chloro butane on reaction with alcohol $\text{ KOH }$ gives 2-butene as the major product. This is because the double-bonded carbons are linked to two methyl groups thus it is highly alkylated compared to 1-butene.
Note: Note that, if the substituted alkene formed during the elimination is capable of showing the cis-trans isomerism, then trans –alkene is always preferably formed as the major product because of its greater stability. For example here major product 2-butene exists in two isomers cis and trans and trans-isomer will be greater in amount. Thus we can say that $\text{ }\beta -\text{ }$ elimination of secondary halide results in three product major product (cis + trans isomers) and a minor product.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE