Answer
Verified
480k+ views
Hint: To add the given two algebraic expressions, add the coefficients of the same powers of x. Add coefficients of ${{x}^{3}},{{x}^{2}},x$ to get the coefficient of ${{x}^{3}},{{x}^{2}}\ and\ x$ respectively in the sum and add the constant terms together to get the constant term of the sum.
Complete step by step answer:
In the sum there will be terms of ${{x}^{3}},{{x}^{2}},x$ and there will be a constant term, as the two terms have the terms of ${{x}^{3}},{{x}^{2}}\ and\ x$ and also constant terms.
Coefficient of ${{x}^{3}}$ in the sum will be the sum of coefficient of ${{x}^{3}}$ in the given two terms.
Coefficient of ${{x}^{3}}$ in the first expression = 7
Coefficient of ${{x}^{3}}$ in the second expression = 1
So, coefficient of ${{x}^{3}}$ in the sum = 7 + 1 = 8
Similarly,
Coefficient of ${{x}^{2}}$ in the sum will be the sum of coefficient of ${{x}^{2}}$ in the two expressions.
Coefficient of ${{x}^{2}}$ in the first expression = 2
Coefficient of ${{x}^{2}}$ in the second expression = -5
So, the coefficient of ${{x}^{2}}$ in the sum = 2 + (-5) = -3
Similarly,
Coefficient of $x$ in the sum will be the sum of coefficients of $x$ in the two expressions.
Coefficient of $x$ in the first expression = -5
Coefficient of $x$ in the second expression = 4
So, the coefficient of $x$ in the sum = (-5) + (4) = -1
Similarly, the constant term in the sum will be the sum of constants in the two expressions.
Constant term in first expression = -7
Constant term in second expression = -5
So, the constant term in the sum = (-7) +(-5) = -12
Hence, we have found that coefficient of ${{x}^{3}}$ in the sum will be 8, coefficient of ${{x}^{2}}$ in the sum will be -3, coefficient of $x$ in the sum will be -1 and the constant term in the sum will be -12.
Hence, the sum of the two algebraic expressions will be $8{{x}^{3}}-3{{x}^{2}}-x-12$.
Note: Note that we can only add the terms which are having the same powers in $x$. If the terms have different powers in $'x'$, we cannot add them together to make one term but we will simply write the terms together using ‘+’ or ‘ – ‘ sign. As we cannot add $8{{x}^{3}},-3{{x}^{2}},-x\ and-12$ to make one term. So, we will write the sum using these terms with ‘+’ or ‘ – ‘ sign i.e. $8{{x}^{3}}-3{{x}^{2}}-x-12$.
Complete step by step answer:
In the sum there will be terms of ${{x}^{3}},{{x}^{2}},x$ and there will be a constant term, as the two terms have the terms of ${{x}^{3}},{{x}^{2}}\ and\ x$ and also constant terms.
Coefficient of ${{x}^{3}}$ in the sum will be the sum of coefficient of ${{x}^{3}}$ in the given two terms.
Coefficient of ${{x}^{3}}$ in the first expression = 7
Coefficient of ${{x}^{3}}$ in the second expression = 1
So, coefficient of ${{x}^{3}}$ in the sum = 7 + 1 = 8
Similarly,
Coefficient of ${{x}^{2}}$ in the sum will be the sum of coefficient of ${{x}^{2}}$ in the two expressions.
Coefficient of ${{x}^{2}}$ in the first expression = 2
Coefficient of ${{x}^{2}}$ in the second expression = -5
So, the coefficient of ${{x}^{2}}$ in the sum = 2 + (-5) = -3
Similarly,
Coefficient of $x$ in the sum will be the sum of coefficients of $x$ in the two expressions.
Coefficient of $x$ in the first expression = -5
Coefficient of $x$ in the second expression = 4
So, the coefficient of $x$ in the sum = (-5) + (4) = -1
Similarly, the constant term in the sum will be the sum of constants in the two expressions.
Constant term in first expression = -7
Constant term in second expression = -5
So, the constant term in the sum = (-7) +(-5) = -12
Hence, we have found that coefficient of ${{x}^{3}}$ in the sum will be 8, coefficient of ${{x}^{2}}$ in the sum will be -3, coefficient of $x$ in the sum will be -1 and the constant term in the sum will be -12.
Hence, the sum of the two algebraic expressions will be $8{{x}^{3}}-3{{x}^{2}}-x-12$.
Note: Note that we can only add the terms which are having the same powers in $x$. If the terms have different powers in $'x'$, we cannot add them together to make one term but we will simply write the terms together using ‘+’ or ‘ – ‘ sign. As we cannot add $8{{x}^{3}},-3{{x}^{2}},-x\ and-12$ to make one term. So, we will write the sum using these terms with ‘+’ or ‘ – ‘ sign i.e. $8{{x}^{3}}-3{{x}^{2}}-x-12$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE