Answer
Verified
486k+ views
Hint – In this question we are given two different equations and we need to add them horizontally and vertically. Horizontally addition means we simply need to add the two equations marked in horizontal fashion, normally as done during equation addition. Vertical method addition means the equation needs to be added in vertical alignment such that the left hand side of one equation falls in the left hand side of the other whereas the right hand side of one equation falls under the right hand side of the other equation.
Complete step by step answer:
Given algebraic expression are
${x^2} - 2xy + 3{y^2}; 5{y^2} + 3xy - 6{x^2}$
Now we have to add these following expressions using horizontal and vertical methods.
$\left( i \right)$ Horizontal method
In this method, all expressions are written in a horizontal line and then the terms are arranged to collect all the groups of like terms and then added.
So first equation is
$ \Rightarrow {x^2} - 2xy + 3{y^2}$………………………….. (1)
Second equation is
$ \Rightarrow 5{y^2} + 3xy - 6{x^2}$
The above equation is also written as
$ \Rightarrow - 6{x^2} + 3xy + 5{y^2}$…………………… (2)
Now add these two equations horizontally we have,
$ \Rightarrow \left( {{x^2} - 2xy + 3{y^2}} \right) + \left( { - 6{x^2} + 3xy + 5{y^2}} \right)$
Now collect like terms we have,
\[ \Rightarrow \left( {1 - 6} \right){x^2} + \left( { - 2 + 3} \right)xy + \left( {3 + 5} \right){y^2}\]
Now simplify we have,
$ \Rightarrow - 5{x^2} + xy + 8{y^2}$………………………. (3)
So, this is the required addition using the horizontal method.
$\left( {ii} \right)$ Vertical method
Vertical addition is a method of adding where you place the numbers vertically, top to bottom, and line up the numbers with the same place values in the same columns. This allows you to add the numbers in each place value separately to come up with the answer.
So first equation is
$ \Rightarrow {x^2} - 2xy + 3{y^2}$………………………….. (1)
Second equation is
$ \Rightarrow 5{y^2} + 3xy - 6{x^2}$
The above equation is also written as
$ \Rightarrow - 6{x^2} + 3xy + 5{y^2}$…………………… (2)
Now add these two equations vertically we have,
\[
\;{\text{ }}\left( {{x^2} - 2xy + 3{y^2}} \right) \\
{\text{ + }}\left( { - 6{x^2} + 3xy + 5{y^2}} \right) \\
{\text{ }}\overline {\left( {1 - 6} \right){x^2} + \left( { - 2 + 3} \right)xy + \left( {3 + 5} \right){y^2}} \\
\]
Now simplify we have,
$ \Rightarrow - 5{x^2} + xy + 8{y^2}$……………………….. (4)
So, this is the required addition using the vertical method.
So as we see that both the equations (3) and (4) are the same so we get the same answer using both horizontal and vertical methods.
Note – Whenever we face such types of problems the key concept is simply to add the given equations using the methods which are being asked in the problem. Remember that during equation addition or even subtraction the coefficients of same variables get added or subtracted. Use this concept to get on the right track to reach the answer.
Complete step by step answer:
Given algebraic expression are
${x^2} - 2xy + 3{y^2}; 5{y^2} + 3xy - 6{x^2}$
Now we have to add these following expressions using horizontal and vertical methods.
$\left( i \right)$ Horizontal method
In this method, all expressions are written in a horizontal line and then the terms are arranged to collect all the groups of like terms and then added.
So first equation is
$ \Rightarrow {x^2} - 2xy + 3{y^2}$………………………….. (1)
Second equation is
$ \Rightarrow 5{y^2} + 3xy - 6{x^2}$
The above equation is also written as
$ \Rightarrow - 6{x^2} + 3xy + 5{y^2}$…………………… (2)
Now add these two equations horizontally we have,
$ \Rightarrow \left( {{x^2} - 2xy + 3{y^2}} \right) + \left( { - 6{x^2} + 3xy + 5{y^2}} \right)$
Now collect like terms we have,
\[ \Rightarrow \left( {1 - 6} \right){x^2} + \left( { - 2 + 3} \right)xy + \left( {3 + 5} \right){y^2}\]
Now simplify we have,
$ \Rightarrow - 5{x^2} + xy + 8{y^2}$………………………. (3)
So, this is the required addition using the horizontal method.
$\left( {ii} \right)$ Vertical method
Vertical addition is a method of adding where you place the numbers vertically, top to bottom, and line up the numbers with the same place values in the same columns. This allows you to add the numbers in each place value separately to come up with the answer.
So first equation is
$ \Rightarrow {x^2} - 2xy + 3{y^2}$………………………….. (1)
Second equation is
$ \Rightarrow 5{y^2} + 3xy - 6{x^2}$
The above equation is also written as
$ \Rightarrow - 6{x^2} + 3xy + 5{y^2}$…………………… (2)
Now add these two equations vertically we have,
\[
\;{\text{ }}\left( {{x^2} - 2xy + 3{y^2}} \right) \\
{\text{ + }}\left( { - 6{x^2} + 3xy + 5{y^2}} \right) \\
{\text{ }}\overline {\left( {1 - 6} \right){x^2} + \left( { - 2 + 3} \right)xy + \left( {3 + 5} \right){y^2}} \\
\]
Now simplify we have,
$ \Rightarrow - 5{x^2} + xy + 8{y^2}$……………………….. (4)
So, this is the required addition using the vertical method.
So as we see that both the equations (3) and (4) are the same so we get the same answer using both horizontal and vertical methods.
Note – Whenever we face such types of problems the key concept is simply to add the given equations using the methods which are being asked in the problem. Remember that during equation addition or even subtraction the coefficients of same variables get added or subtracted. Use this concept to get on the right track to reach the answer.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE