Answer
Verified
439.5k+ views
Hint: At distance of closest approaches all the kinetic energy of \[\alpha - particle\] is converted into electrostatic potential energy because at distance of closest approach velocity of \[\alpha - particle\]becomes zero because of strong repulsion from the heavy nucleus.
Complete step by step solution:
Velocity of \[\alpha - particle\]is v
So initially its kinetic energy [K] will be \[K = \dfrac{1}{2}m{v^2}\]
Now assuming \[\alpha - particle\] is bombard from a distance
Then potential energy of \[\alpha - particle\]and heavy nucleus will be approximately zero
Now let's assume at distance of closest approach \[\alpha - particle\]comes under influence of only one nuclei
Then,
Potential energy at closest distance of approach will be
\[PE = \dfrac{{k{q_1}{q_2}}}{r} = k\dfrac{{[2e][Ze]}}{{{r_o}}}\]where \[{r_o}\] is distance of closest approach.
And 2e is charge on \[\alpha - particle\]while Ze is charge on the heavy nuclei,
Now applying energy conservation we have,
\[K = PE\]
\[ \Rightarrow \dfrac{1}{2}m{v^2} = k\dfrac{{[2e][Ze]}}{{{r_o}}}\]
\[ \Rightarrow {r_o} = \dfrac{{4kZ{e^2}}}{{m{v^2}}}\]
$\therefore$ \[{r_o} \propto \dfrac{1}{m}\]
As we can see that distance of closest approach in \[\alpha - particle\] bombarding is inversely proportional to its mass.
So, the correct answer is “Option A”.
Note:
Here i have assumed one to one interaction between \[\alpha - particle\] and heavy nuclei but in reality it's not true all other nuclei around the colliding nuclei also contribute in repulsion, still answer will remain same because kinetic energy depends upon mass of \[\alpha - particle\] and inclusion of other nuclei will only change potential energy so we will not get the exactly same expression for distance of closest approach but it will still be inversely proportional to mass as mass is invariable in this context.
Complete step by step solution:
Velocity of \[\alpha - particle\]is v
So initially its kinetic energy [K] will be \[K = \dfrac{1}{2}m{v^2}\]
Now assuming \[\alpha - particle\] is bombard from a distance
Then potential energy of \[\alpha - particle\]and heavy nucleus will be approximately zero
Now let's assume at distance of closest approach \[\alpha - particle\]comes under influence of only one nuclei
Then,
Potential energy at closest distance of approach will be
\[PE = \dfrac{{k{q_1}{q_2}}}{r} = k\dfrac{{[2e][Ze]}}{{{r_o}}}\]where \[{r_o}\] is distance of closest approach.
And 2e is charge on \[\alpha - particle\]while Ze is charge on the heavy nuclei,
Now applying energy conservation we have,
\[K = PE\]
\[ \Rightarrow \dfrac{1}{2}m{v^2} = k\dfrac{{[2e][Ze]}}{{{r_o}}}\]
\[ \Rightarrow {r_o} = \dfrac{{4kZ{e^2}}}{{m{v^2}}}\]
$\therefore$ \[{r_o} \propto \dfrac{1}{m}\]
As we can see that distance of closest approach in \[\alpha - particle\] bombarding is inversely proportional to its mass.
So, the correct answer is “Option A”.
Note:
Here i have assumed one to one interaction between \[\alpha - particle\] and heavy nuclei but in reality it's not true all other nuclei around the colliding nuclei also contribute in repulsion, still answer will remain same because kinetic energy depends upon mass of \[\alpha - particle\] and inclusion of other nuclei will only change potential energy so we will not get the exactly same expression for distance of closest approach but it will still be inversely proportional to mass as mass is invariable in this context.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE