
When alternating current flows through a conductor, the flux change:
(A) is higher in the inner part of the conductor
(B) is lower in the inner part of the conductor
(C) is uniform throughout the conductor
(D) Depends upon the resistivity of the conductor
Answer
504.3k+ views
Hint: Alternating current is one in which the direction of current changes in every particular fixed time and this time is called its time period and inverse of the time period called its frequency of an alternating current while direct current always flows in only one particular direction.
Complete step-by-step solution:
Let us suppose the current flowing in an AC circuit is given as:
$i = {i_0}\sin (\omega t + \theta )$ Now, we need to determine the rate of change of flux
As, flux $\phi = Li$
Change of flux is:
$\dfrac{{d\phi }}{{dt}} = L\dfrac{{di}}{{dt}}$
Which can be written as
$\dfrac{{d\phi }}{{dt}} = L{i_0}\dfrac{{d\sin (\omega t + \theta )}}{{dt}}$
$\dfrac{{d\phi }}{{dt}} = L{i_0}\omega \cos (\omega t + \theta )$
Since, $L$ is the inductance of the conductor which remains constant with time
${i_0}$ Is the maximum value of current in alternating circuit so, its value also remain fixed with time
Hence, the rate of change of flux is not dependent upon the inner or outer radius or lengths of the conductor, its remaining constant uniformly throughout the whole conductor.
Hence, the correct option is (C) is uniform throughout the conductor.
Note: Since, alternating current direction changes with time so, the direction of flux changes with the direction of current in every phase but the magnitude of rate of change of flux remains same in every phase and is always independent of length and have a uniform constant value with time.
Complete step-by-step solution:
Let us suppose the current flowing in an AC circuit is given as:
$i = {i_0}\sin (\omega t + \theta )$ Now, we need to determine the rate of change of flux
As, flux $\phi = Li$
Change of flux is:
$\dfrac{{d\phi }}{{dt}} = L\dfrac{{di}}{{dt}}$
Which can be written as
$\dfrac{{d\phi }}{{dt}} = L{i_0}\dfrac{{d\sin (\omega t + \theta )}}{{dt}}$
$\dfrac{{d\phi }}{{dt}} = L{i_0}\omega \cos (\omega t + \theta )$
Since, $L$ is the inductance of the conductor which remains constant with time
${i_0}$ Is the maximum value of current in alternating circuit so, its value also remain fixed with time
Hence, the rate of change of flux is not dependent upon the inner or outer radius or lengths of the conductor, its remaining constant uniformly throughout the whole conductor.
Hence, the correct option is (C) is uniform throughout the conductor.
Note: Since, alternating current direction changes with time so, the direction of flux changes with the direction of current in every phase but the magnitude of rate of change of flux remains same in every phase and is always independent of length and have a uniform constant value with time.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

