Answer
Verified
357k+ views
Hint:We are asked to find the amplitude of electric or magnetic field with the given data. From the given value of electrical power in volts, we find the value of power in watts by multiplying with the given current. We know the relation between power and intensity, so we find the value of intensity with respect to power and cross-sectional area. We find the magnitude of electric and magnetic fields by applying the formulas.
Formulas used:
The electric power of the given beam is given by, \[P = VI\] and \[P = \dfrac{{\rm E}}{t}\]
Intensity is, \[I = \dfrac{{\rm E}}{{At}}\]
Intensity is also defined as the power per area, \[I = \dfrac{P}{A}\]
Intensity of the beam is the sum of electric and magnetic field, \[I = {I_E} + {I_B}\]
Intensity of electric field can be found from the formula, \[I = {{\rm E}_0}{E^2}C\]
Intensity of magnetic field can be found out from the formula, \[C = \dfrac{E}{B}\]
Where, \[{I_E}\] is the intensity due to electric field, \[{I_B}\] is the intensity due to the magnetic field and \[{{\rm E}_0}\] is the permittivity of free space, \[{{\rm E}_0} = 8.854 \times {10^{ - 12}}F/m\]
Complete step by step answer:
Let us start by writing down the given information.
The cross-sectional area of the given beam is, \[A = 100{m^2}\]
The voltage of the bean is, \[V = 500kV\]
The current of the beam is, \[I = {10^3}A\]
We find the power associated with the given current and voltage using the formula,
\[P = VI \\
\Rightarrow P = 500kV \times {10^3}A \\
\Rightarrow P = 500 \times {10^3} \times {10^3} \\
\Rightarrow P = 5 \times {10^8}W\]
We convert the value of voltage from kilo volt to volt.
Now that we have the actual value of power, we find the relation between power and intensity.
Intensity is, \[I = \dfrac{{\rm E}}{{At}}\] and power is \[P = \dfrac{{\rm E}}{t}\]
Hence, \[I = \dfrac{P}{A}\]
Substituting the values, we get
\[I = \dfrac{P}{A} \\
\Rightarrow I = \dfrac{{5 \times {{10}^8}W}}{{100{m^2}}} \\
\Rightarrow I = 5 \times {10^6}W/{m^2}\]
We also know that, \[I = {I_E} + {I_B}\]
In an electromagnetic wave, the electric and magnetic fields are equally oscillating, so we conclude \[{I_E} = {I_B} = \dfrac{I}{2}\].
Now we apply the relation between intensity and electric field and find the intensity of electric field.
\[E = \sqrt {\dfrac{I}{{{{\rm E}_0}C}}} \\
\Rightarrow E = \sqrt {\dfrac{{5 \times {{10}^6}}}{{8.85 \times {{10}^{ - 12}} \times 3 \times {{10}^8}}}} \\
\Rightarrow E = 0.434 \times {10^5} \\
\Rightarrow E = 4.34 \times {10^4}N/C\]
Since we have the value of electric field, we find the value of magnetic field using,
\[B = \dfrac{E}{C} \\
\Rightarrow B = \dfrac{{4.34 \times {{10}^4}}}{{3 \times {{10}^8}}} \\
\therefore B = 1.45 \times {10^{ - 4}}T\]
Hence, the value of electric field is \[4.34 \times {10^4}N/C\] , and the value of amplitude of magnetic field is \[1.45 \times {10^{ - 4}}T\].
Note:The value of power is directly not given. Thus, we have to calculate it using the formula relating the power with voltage and current. We can notice that the intensity of the field is inversely proportional to the area of the cross section and directly proportional to the power. The electric and magnetic fields are equally oscillating in a given electromagnetic field.
Formulas used:
The electric power of the given beam is given by, \[P = VI\] and \[P = \dfrac{{\rm E}}{t}\]
Intensity is, \[I = \dfrac{{\rm E}}{{At}}\]
Intensity is also defined as the power per area, \[I = \dfrac{P}{A}\]
Intensity of the beam is the sum of electric and magnetic field, \[I = {I_E} + {I_B}\]
Intensity of electric field can be found from the formula, \[I = {{\rm E}_0}{E^2}C\]
Intensity of magnetic field can be found out from the formula, \[C = \dfrac{E}{B}\]
Where, \[{I_E}\] is the intensity due to electric field, \[{I_B}\] is the intensity due to the magnetic field and \[{{\rm E}_0}\] is the permittivity of free space, \[{{\rm E}_0} = 8.854 \times {10^{ - 12}}F/m\]
Complete step by step answer:
Let us start by writing down the given information.
The cross-sectional area of the given beam is, \[A = 100{m^2}\]
The voltage of the bean is, \[V = 500kV\]
The current of the beam is, \[I = {10^3}A\]
We find the power associated with the given current and voltage using the formula,
\[P = VI \\
\Rightarrow P = 500kV \times {10^3}A \\
\Rightarrow P = 500 \times {10^3} \times {10^3} \\
\Rightarrow P = 5 \times {10^8}W\]
We convert the value of voltage from kilo volt to volt.
Now that we have the actual value of power, we find the relation between power and intensity.
Intensity is, \[I = \dfrac{{\rm E}}{{At}}\] and power is \[P = \dfrac{{\rm E}}{t}\]
Hence, \[I = \dfrac{P}{A}\]
Substituting the values, we get
\[I = \dfrac{P}{A} \\
\Rightarrow I = \dfrac{{5 \times {{10}^8}W}}{{100{m^2}}} \\
\Rightarrow I = 5 \times {10^6}W/{m^2}\]
We also know that, \[I = {I_E} + {I_B}\]
In an electromagnetic wave, the electric and magnetic fields are equally oscillating, so we conclude \[{I_E} = {I_B} = \dfrac{I}{2}\].
Now we apply the relation between intensity and electric field and find the intensity of electric field.
\[E = \sqrt {\dfrac{I}{{{{\rm E}_0}C}}} \\
\Rightarrow E = \sqrt {\dfrac{{5 \times {{10}^6}}}{{8.85 \times {{10}^{ - 12}} \times 3 \times {{10}^8}}}} \\
\Rightarrow E = 0.434 \times {10^5} \\
\Rightarrow E = 4.34 \times {10^4}N/C\]
Since we have the value of electric field, we find the value of magnetic field using,
\[B = \dfrac{E}{C} \\
\Rightarrow B = \dfrac{{4.34 \times {{10}^4}}}{{3 \times {{10}^8}}} \\
\therefore B = 1.45 \times {10^{ - 4}}T\]
Hence, the value of electric field is \[4.34 \times {10^4}N/C\] , and the value of amplitude of magnetic field is \[1.45 \times {10^{ - 4}}T\].
Note:The value of power is directly not given. Thus, we have to calculate it using the formula relating the power with voltage and current. We can notice that the intensity of the field is inversely proportional to the area of the cross section and directly proportional to the power. The electric and magnetic fields are equally oscillating in a given electromagnetic field.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE