Answer
Verified
447.9k+ views
Hint: We will represent the given data in a diagram and list all the parameters given. We will assume some necessary parameters from the diagram. By using the trigonometric ratios $\left( \tan \theta \right)$ we will find the values of vertical distances corresponding to the angle. After finding those values from the diagram we will calculate the required value.
Complete step by step answer:
Given that an airplane is flying at a height of $5000 m$ from the ground passes vertically above another airplane at an instant when the angles of the elevation of the two planes from the same point on the ground are $60{}^\circ $ and $45{}^\circ $ respectively as shown in the below figure
In the above figure
$BC$ represents the path of the vertical plane which is at a height of $5000 m$ so $BC=5000 m$
$D$ is the point where another airplane is flying in the air.
The angle $\alpha $ represents elevation made by the plane at point $D$ from a point on the ground and from given data that is equal to $45{}^\circ $.
The angle $\beta $ represents the elevation made by the plane at point $C$ from a point on the ground and from given data that is equal to $60{}^\circ $.
Up to now we have
$\begin{align}
& BC=5000m \\
& \alpha =45{}^\circ \\
& \beta =60{}^\circ \\
\end{align}$
$\Rightarrow$ Assume that the length of $BD=y$ and the length of the $AB=x$
Now use the trigonometric ratio $\tan $ for $\alpha ,\beta $ separately.
We know that $\tan \theta =\dfrac{\text{Opposite side to }\theta }{\text{Adjacent side to }\theta }$, hence
$\begin{align}
& \tan \alpha =\dfrac{\text{Opposite side to }\alpha }{\text{Adjacent side to }\alpha } \\
& =\dfrac{BD}{AB} \\
& \tan \alpha =\dfrac{y}{x}
\end{align}$
$\Rightarrow$ Substituting the value of $\alpha $in the above equation then
$\Rightarrow$ $\tan 45{}^\circ =\dfrac{y}{x}$
$\Rightarrow$ We know that $\tan 45{}^\circ =1$ then
$\begin{align}
& \dfrac{y}{x}=1 \\
& y=x.....\left( \text{i} \right)
\end{align}$
$\Rightarrow$ Now finding the value of $\tan \beta $, so
$\begin{align}
& \tan \beta =\dfrac{\text{Opposite side to }\beta }{\text{Adjacent side to }\beta } \\
& =\dfrac{BC}{AB} \\
& =\dfrac{5000}{x}
\end{align}$
$\Rightarrow$ Substituting the value of $\beta $ in the above equation then
$\tan 60{}^\circ =\dfrac{5000}{x}$
From equation $\left( \text{i} \right)$we have $y=x$ and we know $\tan 60{}^\circ =\sqrt{3}$ substituting these value in the above equation then
$\begin{align}
& \sqrt{3}=\dfrac{5000}{y} \\
& y=\dfrac{5000}{\sqrt{3}}
\end{align}$
$\Rightarrow$ Now the vertical distance between the planes is $DC$ and that is given by
$\begin{align}
& DC=BC-BD \\
& =5000-y \\
& =5000-\dfrac{5000}{\sqrt{3}} \\
& =5000\left( 1-\dfrac{1}{\sqrt{3}} \right)
\end{align}$
$\Rightarrow$ Hence the vertical distance between the two planes is $5000\left( 1-\dfrac{1}{\sqrt{3}} \right)$
Note:
For this type of problem, the diagrammatical representation gives half of the answer. While converting the given data into the diagrammatical form you need to know what was the relationship between the given data and required data. From that relation make an equation to solve the problem. Some of the relations are given below
$\begin{align}
& \sin \theta =\dfrac{\text{Opposite side to }\theta }{\text{Hypotenuse}} \\
& \cos \theta =\dfrac{\text{Adjacent side to }\theta }{\text{Hypotenuse}} \\
& \tan \theta =\dfrac{\text{Opposite side to }\theta }{\text{Adjacent side to }\theta }=\dfrac{\sin \theta }{\cos \theta } \\
& \cot \theta =\dfrac{1}{\tan \theta }=\dfrac{\cos \theta }{\sin \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \csc \theta =\dfrac{1}{\sin \theta }
\end{align}$
Complete step by step answer:
Given that an airplane is flying at a height of $5000 m$ from the ground passes vertically above another airplane at an instant when the angles of the elevation of the two planes from the same point on the ground are $60{}^\circ $ and $45{}^\circ $ respectively as shown in the below figure
In the above figure
$BC$ represents the path of the vertical plane which is at a height of $5000 m$ so $BC=5000 m$
$D$ is the point where another airplane is flying in the air.
The angle $\alpha $ represents elevation made by the plane at point $D$ from a point on the ground and from given data that is equal to $45{}^\circ $.
The angle $\beta $ represents the elevation made by the plane at point $C$ from a point on the ground and from given data that is equal to $60{}^\circ $.
Up to now we have
$\begin{align}
& BC=5000m \\
& \alpha =45{}^\circ \\
& \beta =60{}^\circ \\
\end{align}$
$\Rightarrow$ Assume that the length of $BD=y$ and the length of the $AB=x$
Now use the trigonometric ratio $\tan $ for $\alpha ,\beta $ separately.
We know that $\tan \theta =\dfrac{\text{Opposite side to }\theta }{\text{Adjacent side to }\theta }$, hence
$\begin{align}
& \tan \alpha =\dfrac{\text{Opposite side to }\alpha }{\text{Adjacent side to }\alpha } \\
& =\dfrac{BD}{AB} \\
& \tan \alpha =\dfrac{y}{x}
\end{align}$
$\Rightarrow$ Substituting the value of $\alpha $in the above equation then
$\Rightarrow$ $\tan 45{}^\circ =\dfrac{y}{x}$
$\Rightarrow$ We know that $\tan 45{}^\circ =1$ then
$\begin{align}
& \dfrac{y}{x}=1 \\
& y=x.....\left( \text{i} \right)
\end{align}$
$\Rightarrow$ Now finding the value of $\tan \beta $, so
$\begin{align}
& \tan \beta =\dfrac{\text{Opposite side to }\beta }{\text{Adjacent side to }\beta } \\
& =\dfrac{BC}{AB} \\
& =\dfrac{5000}{x}
\end{align}$
$\Rightarrow$ Substituting the value of $\beta $ in the above equation then
$\tan 60{}^\circ =\dfrac{5000}{x}$
From equation $\left( \text{i} \right)$we have $y=x$ and we know $\tan 60{}^\circ =\sqrt{3}$ substituting these value in the above equation then
$\begin{align}
& \sqrt{3}=\dfrac{5000}{y} \\
& y=\dfrac{5000}{\sqrt{3}}
\end{align}$
$\Rightarrow$ Now the vertical distance between the planes is $DC$ and that is given by
$\begin{align}
& DC=BC-BD \\
& =5000-y \\
& =5000-\dfrac{5000}{\sqrt{3}} \\
& =5000\left( 1-\dfrac{1}{\sqrt{3}} \right)
\end{align}$
$\Rightarrow$ Hence the vertical distance between the two planes is $5000\left( 1-\dfrac{1}{\sqrt{3}} \right)$
Note:
For this type of problem, the diagrammatical representation gives half of the answer. While converting the given data into the diagrammatical form you need to know what was the relationship between the given data and required data. From that relation make an equation to solve the problem. Some of the relations are given below
$\begin{align}
& \sin \theta =\dfrac{\text{Opposite side to }\theta }{\text{Hypotenuse}} \\
& \cos \theta =\dfrac{\text{Adjacent side to }\theta }{\text{Hypotenuse}} \\
& \tan \theta =\dfrac{\text{Opposite side to }\theta }{\text{Adjacent side to }\theta }=\dfrac{\sin \theta }{\cos \theta } \\
& \cot \theta =\dfrac{1}{\tan \theta }=\dfrac{\cos \theta }{\sin \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \csc \theta =\dfrac{1}{\sin \theta }
\end{align}$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is pollution? How many types of pollution? Define it
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE