Answer
Verified
486k+ views
Hint: This problem demands the use of derivatives. Here, at first we will find any general point on this curve and then we will calculate its distance from the given point using distance formula. In order to get the minimum distance, we will make the derivative of the distance equal to zero.
Complete step-by-step answer:
Since, the curve given to us is:
$y={{x}^{2}}+7...........\left( 1 \right)$
So, any general point on this given curve will be of the form $\left( x,{{x}^{2}}+7 \right)$ .
To calculate the distance of the point (3, 7) from this point can be calculated using the distance formula.
We know that the distance formula is given as:
$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
So, using this formula we get the distance between the general point and (3, 7) as:
$\begin{align}
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{\left\{ 7-\left( {{x}^{2}}+7 \right) \right\}}^{2}}} \\
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{\left( 7-{{x}^{2}}-7 \right)}^{2}}} \\
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}} \\
\end{align}$
Since, we have to find the minimum value of d. At the point of minimum the derivative of d must be zero.
So, we will differentiate d which is a function of x with respect to x and equate it to zero to get the point of minimum.
$\begin{align}
& \dfrac{d\left( d \right)}{dx}=0 \\
& \dfrac{1}{2\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}}}\times \left\{ 2\left( 3-x \right)\left( -1 \right)+4{{x}^{3}} \right\}=0 \\
& \left\{ -2\left( 3-x \right)+4{{x}^{3}} \right\}=0 \\
& -6+2x+4{{x}^{3}}=0 \\
\end{align}$
If we substitute x = 1 in this equation, we get:
$-6+2\times 1+4{{\left( 1 \right)}^{3}}=-6+2+4=0$
It means that x = 1 is a solution of this equation and hence, (x-1) is a factor of $-6+2x+4{{x}^{3}}$ .
So, we have:
$\left( x-1 \right)\left( 4{{x}^{2}}+4x+6 \right)=0$
Now the discriminant of the quadratic equation $\left( 4{{x}^{2}}+4x+6 \right)$ is = ${{4}^{2}}-4\times 4\times 6=16-84=-48$.
Since, the discriminant is zero so, this quadratic equation does not have any real roots.
Now we will double differentiate the d and check whether it gives a positive value at x=1.
If it gives a positive value at x =1 , then x = 1 will be a point of minimum.
$\dfrac{d\left( d' \right)}{dx}=\dfrac{\left\{ \dfrac{1}{2\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}}}\times \left( -2 \right)\left( -1 \right)+12{{x}^{3}} \right\}-\left\{ \left( -2 \right)\times \left( 3-x \right)+4{{x}^{3}} \right\}\times \dfrac{\left( -1 \right)}{4\times {{\left\{ {{\left( 3-x \right)}^{2}}+{{x}^{4}} \right\}}^{\dfrac{3}{2}}}}}{4\left\{ {{\left( 3-x \right)}^{2}}+{{x}^{4}} \right\}}$
On putting x=1, we get:
$\begin{align}
& \dfrac{d\left( d' \right)}{dx}=\dfrac{\left\{ \dfrac{1}{2\sqrt{4+1}}\times \left( 2+12 \right) \right\}-\left\{ \left( -4+4 \right)\times \dfrac{\left( -1 \right)}{4\times {{\left( 4+1 \right)}^{\dfrac{3}{2}}}} \right\}}{4\left( 4+1 \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\dfrac{14}{2\sqrt{5}}-0}{20} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{14}{40\sqrt{5}} \\
\end{align}$
So, it comes out to be greater than zero at x=1. Therefore, x=1 is the minimum.
On substituting x = 1 in equation (1), we get:
$y={{\left( 1 \right)}^{2}}+7=8$
So, nearest distance is the distance between (3, 7) and (1, 8) and using the distance formula this distance will be:
$\begin{align}
& =\sqrt{{{\left( 3-1 \right)}^{2}}+{{\left( 7-8 \right)}^{2}}} \\
& =\sqrt{4+1} \\
& =\sqrt{5} \\
& =2.23 \\
\end{align}$
Hence, the nearest distance is 2.23 units.
Note: Students should note that at the point of minimum the derivative of a function is zero. Also, at the point of minimum the double derivative of the function is positive.
Complete step-by-step answer:
Since, the curve given to us is:
$y={{x}^{2}}+7...........\left( 1 \right)$
So, any general point on this given curve will be of the form $\left( x,{{x}^{2}}+7 \right)$ .
To calculate the distance of the point (3, 7) from this point can be calculated using the distance formula.
We know that the distance formula is given as:
$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
So, using this formula we get the distance between the general point and (3, 7) as:
$\begin{align}
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{\left\{ 7-\left( {{x}^{2}}+7 \right) \right\}}^{2}}} \\
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{\left( 7-{{x}^{2}}-7 \right)}^{2}}} \\
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}} \\
\end{align}$
Since, we have to find the minimum value of d. At the point of minimum the derivative of d must be zero.
So, we will differentiate d which is a function of x with respect to x and equate it to zero to get the point of minimum.
$\begin{align}
& \dfrac{d\left( d \right)}{dx}=0 \\
& \dfrac{1}{2\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}}}\times \left\{ 2\left( 3-x \right)\left( -1 \right)+4{{x}^{3}} \right\}=0 \\
& \left\{ -2\left( 3-x \right)+4{{x}^{3}} \right\}=0 \\
& -6+2x+4{{x}^{3}}=0 \\
\end{align}$
If we substitute x = 1 in this equation, we get:
$-6+2\times 1+4{{\left( 1 \right)}^{3}}=-6+2+4=0$
It means that x = 1 is a solution of this equation and hence, (x-1) is a factor of $-6+2x+4{{x}^{3}}$ .
So, we have:
$\left( x-1 \right)\left( 4{{x}^{2}}+4x+6 \right)=0$
Now the discriminant of the quadratic equation $\left( 4{{x}^{2}}+4x+6 \right)$ is = ${{4}^{2}}-4\times 4\times 6=16-84=-48$.
Since, the discriminant is zero so, this quadratic equation does not have any real roots.
Now we will double differentiate the d and check whether it gives a positive value at x=1.
If it gives a positive value at x =1 , then x = 1 will be a point of minimum.
$\dfrac{d\left( d' \right)}{dx}=\dfrac{\left\{ \dfrac{1}{2\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}}}\times \left( -2 \right)\left( -1 \right)+12{{x}^{3}} \right\}-\left\{ \left( -2 \right)\times \left( 3-x \right)+4{{x}^{3}} \right\}\times \dfrac{\left( -1 \right)}{4\times {{\left\{ {{\left( 3-x \right)}^{2}}+{{x}^{4}} \right\}}^{\dfrac{3}{2}}}}}{4\left\{ {{\left( 3-x \right)}^{2}}+{{x}^{4}} \right\}}$
On putting x=1, we get:
$\begin{align}
& \dfrac{d\left( d' \right)}{dx}=\dfrac{\left\{ \dfrac{1}{2\sqrt{4+1}}\times \left( 2+12 \right) \right\}-\left\{ \left( -4+4 \right)\times \dfrac{\left( -1 \right)}{4\times {{\left( 4+1 \right)}^{\dfrac{3}{2}}}} \right\}}{4\left( 4+1 \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\dfrac{14}{2\sqrt{5}}-0}{20} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{14}{40\sqrt{5}} \\
\end{align}$
So, it comes out to be greater than zero at x=1. Therefore, x=1 is the minimum.
On substituting x = 1 in equation (1), we get:
$y={{\left( 1 \right)}^{2}}+7=8$
So, nearest distance is the distance between (3, 7) and (1, 8) and using the distance formula this distance will be:
$\begin{align}
& =\sqrt{{{\left( 3-1 \right)}^{2}}+{{\left( 7-8 \right)}^{2}}} \\
& =\sqrt{4+1} \\
& =\sqrt{5} \\
& =2.23 \\
\end{align}$
Hence, the nearest distance is 2.23 units.
Note: Students should note that at the point of minimum the derivative of a function is zero. Also, at the point of minimum the double derivative of the function is positive.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE