Answer
Verified
495.3k+ views
Hint: This problem demands the use of derivatives. Here, at first we will find any general point on this curve and then we will calculate its distance from the given point using distance formula. In order to get the minimum distance, we will make the derivative of the distance equal to zero.
Complete step-by-step answer:
Since, the curve given to us is:
$y={{x}^{2}}+7...........\left( 1 \right)$
So, any general point on this given curve will be of the form $\left( x,{{x}^{2}}+7 \right)$ .
To calculate the distance of the point (3, 7) from this point can be calculated using the distance formula.
We know that the distance formula is given as:
$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
So, using this formula we get the distance between the general point and (3, 7) as:
$\begin{align}
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{\left\{ 7-\left( {{x}^{2}}+7 \right) \right\}}^{2}}} \\
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{\left( 7-{{x}^{2}}-7 \right)}^{2}}} \\
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}} \\
\end{align}$
Since, we have to find the minimum value of d. At the point of minimum the derivative of d must be zero.
So, we will differentiate d which is a function of x with respect to x and equate it to zero to get the point of minimum.
$\begin{align}
& \dfrac{d\left( d \right)}{dx}=0 \\
& \dfrac{1}{2\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}}}\times \left\{ 2\left( 3-x \right)\left( -1 \right)+4{{x}^{3}} \right\}=0 \\
& \left\{ -2\left( 3-x \right)+4{{x}^{3}} \right\}=0 \\
& -6+2x+4{{x}^{3}}=0 \\
\end{align}$
If we substitute x = 1 in this equation, we get:
$-6+2\times 1+4{{\left( 1 \right)}^{3}}=-6+2+4=0$
It means that x = 1 is a solution of this equation and hence, (x-1) is a factor of $-6+2x+4{{x}^{3}}$ .
So, we have:
$\left( x-1 \right)\left( 4{{x}^{2}}+4x+6 \right)=0$
Now the discriminant of the quadratic equation $\left( 4{{x}^{2}}+4x+6 \right)$ is = ${{4}^{2}}-4\times 4\times 6=16-84=-48$.
Since, the discriminant is zero so, this quadratic equation does not have any real roots.
Now we will double differentiate the d and check whether it gives a positive value at x=1.
If it gives a positive value at x =1 , then x = 1 will be a point of minimum.
$\dfrac{d\left( d' \right)}{dx}=\dfrac{\left\{ \dfrac{1}{2\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}}}\times \left( -2 \right)\left( -1 \right)+12{{x}^{3}} \right\}-\left\{ \left( -2 \right)\times \left( 3-x \right)+4{{x}^{3}} \right\}\times \dfrac{\left( -1 \right)}{4\times {{\left\{ {{\left( 3-x \right)}^{2}}+{{x}^{4}} \right\}}^{\dfrac{3}{2}}}}}{4\left\{ {{\left( 3-x \right)}^{2}}+{{x}^{4}} \right\}}$
On putting x=1, we get:
$\begin{align}
& \dfrac{d\left( d' \right)}{dx}=\dfrac{\left\{ \dfrac{1}{2\sqrt{4+1}}\times \left( 2+12 \right) \right\}-\left\{ \left( -4+4 \right)\times \dfrac{\left( -1 \right)}{4\times {{\left( 4+1 \right)}^{\dfrac{3}{2}}}} \right\}}{4\left( 4+1 \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\dfrac{14}{2\sqrt{5}}-0}{20} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{14}{40\sqrt{5}} \\
\end{align}$
So, it comes out to be greater than zero at x=1. Therefore, x=1 is the minimum.
On substituting x = 1 in equation (1), we get:
$y={{\left( 1 \right)}^{2}}+7=8$
So, nearest distance is the distance between (3, 7) and (1, 8) and using the distance formula this distance will be:
$\begin{align}
& =\sqrt{{{\left( 3-1 \right)}^{2}}+{{\left( 7-8 \right)}^{2}}} \\
& =\sqrt{4+1} \\
& =\sqrt{5} \\
& =2.23 \\
\end{align}$
Hence, the nearest distance is 2.23 units.
Note: Students should note that at the point of minimum the derivative of a function is zero. Also, at the point of minimum the double derivative of the function is positive.
Complete step-by-step answer:
Since, the curve given to us is:
$y={{x}^{2}}+7...........\left( 1 \right)$
So, any general point on this given curve will be of the form $\left( x,{{x}^{2}}+7 \right)$ .
To calculate the distance of the point (3, 7) from this point can be calculated using the distance formula.
We know that the distance formula is given as:
$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
So, using this formula we get the distance between the general point and (3, 7) as:
$\begin{align}
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{\left\{ 7-\left( {{x}^{2}}+7 \right) \right\}}^{2}}} \\
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{\left( 7-{{x}^{2}}-7 \right)}^{2}}} \\
& d=\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}} \\
\end{align}$
Since, we have to find the minimum value of d. At the point of minimum the derivative of d must be zero.
So, we will differentiate d which is a function of x with respect to x and equate it to zero to get the point of minimum.
$\begin{align}
& \dfrac{d\left( d \right)}{dx}=0 \\
& \dfrac{1}{2\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}}}\times \left\{ 2\left( 3-x \right)\left( -1 \right)+4{{x}^{3}} \right\}=0 \\
& \left\{ -2\left( 3-x \right)+4{{x}^{3}} \right\}=0 \\
& -6+2x+4{{x}^{3}}=0 \\
\end{align}$
If we substitute x = 1 in this equation, we get:
$-6+2\times 1+4{{\left( 1 \right)}^{3}}=-6+2+4=0$
It means that x = 1 is a solution of this equation and hence, (x-1) is a factor of $-6+2x+4{{x}^{3}}$ .
So, we have:
$\left( x-1 \right)\left( 4{{x}^{2}}+4x+6 \right)=0$
Now the discriminant of the quadratic equation $\left( 4{{x}^{2}}+4x+6 \right)$ is = ${{4}^{2}}-4\times 4\times 6=16-84=-48$.
Since, the discriminant is zero so, this quadratic equation does not have any real roots.
Now we will double differentiate the d and check whether it gives a positive value at x=1.
If it gives a positive value at x =1 , then x = 1 will be a point of minimum.
$\dfrac{d\left( d' \right)}{dx}=\dfrac{\left\{ \dfrac{1}{2\sqrt{{{\left( 3-x \right)}^{2}}+{{x}^{4}}}}\times \left( -2 \right)\left( -1 \right)+12{{x}^{3}} \right\}-\left\{ \left( -2 \right)\times \left( 3-x \right)+4{{x}^{3}} \right\}\times \dfrac{\left( -1 \right)}{4\times {{\left\{ {{\left( 3-x \right)}^{2}}+{{x}^{4}} \right\}}^{\dfrac{3}{2}}}}}{4\left\{ {{\left( 3-x \right)}^{2}}+{{x}^{4}} \right\}}$
On putting x=1, we get:
$\begin{align}
& \dfrac{d\left( d' \right)}{dx}=\dfrac{\left\{ \dfrac{1}{2\sqrt{4+1}}\times \left( 2+12 \right) \right\}-\left\{ \left( -4+4 \right)\times \dfrac{\left( -1 \right)}{4\times {{\left( 4+1 \right)}^{\dfrac{3}{2}}}} \right\}}{4\left( 4+1 \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\dfrac{14}{2\sqrt{5}}-0}{20} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{14}{40\sqrt{5}} \\
\end{align}$
So, it comes out to be greater than zero at x=1. Therefore, x=1 is the minimum.
On substituting x = 1 in equation (1), we get:
$y={{\left( 1 \right)}^{2}}+7=8$
So, nearest distance is the distance between (3, 7) and (1, 8) and using the distance formula this distance will be:
$\begin{align}
& =\sqrt{{{\left( 3-1 \right)}^{2}}+{{\left( 7-8 \right)}^{2}}} \\
& =\sqrt{4+1} \\
& =\sqrt{5} \\
& =2.23 \\
\end{align}$
Hence, the nearest distance is 2.23 units.
Note: Students should note that at the point of minimum the derivative of a function is zero. Also, at the point of minimum the double derivative of the function is positive.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE