
An aqueous solution contains an unknown concentration of . When 50 mL of a 1 M solution of is added, just begins to precipitate. The final volume is 500 ml. The solubility product of is . Find the concentration of in the original solution?
Answer
514.5k+ views
1 likes
Hint: Apply the equation of dilution law to the given problem to help determine the concentration of the ion in the new solution. Then equate the ionisation product of the given chemical substance to the solubility product to help find the answer.
Complete step by step answer:
Let us first understand the concept of solubility product and how it's used for ionic compounds before trying to use these concepts to help solve the given question.
The solubility product constant, , is the equilibrium constant for a solid substance dissolving in an aqueous solution. It represents the level at which a solute dissolves in solution. The more soluble a substance is, the higher the value it has.
Consider the general dissolution reaction below (in aqueous solutions):
To solve for the it is necessary to take the molarities or concentrations of the products (cC and dD) and multiply them. If there are coefficients in front of any of the products, it is necessary to raise the product to that coefficient power (and also multiply the concentration by that coefficient). This is shown below:
=
Let us now apply the dilution law to help find the concentration of the ion in the new solution.
That implies,
Therefore, we can say that the concentration of the ion in the new solution is 0.1M.
Applying this to the equation of solubility product.
Let us now use this to try and find the old concentration of ions by again putting these values into dilution law.
Therefore, we can safely conclude that the answer to this question is a).
Note:
To avoid confusing clutter, solubility product expressions are often written without the state symbols. Even if you don't write them, you must be aware that the symbols for the ions that you write are for those in solution in water.
Complete step by step answer:
Let us first understand the concept of solubility product and how it's used for ionic compounds before trying to use these concepts to help solve the given question.
The solubility product constant,
Consider the general dissolution reaction below (in aqueous solutions):
To solve for the
Let us now apply the dilution law to help find the concentration of the
That implies,
Therefore, we can say that the concentration of the
Applying this to the equation of solubility product.
Let us now use this to try and find the old concentration of
Therefore, we can safely conclude that the answer to this question is a).
Note:
To avoid confusing clutter, solubility product expressions are often written without the state symbols. Even if you don't write them, you must be aware that the symbols for the ions that you write are for those in solution in water.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
