
An atom is initially at an energy level \[E=-6.52eV\]. It absorbs a photon of wavelength \[860nm\]. The internal energy of atom after absorbing photon is
A) 5.08eV
B) 1.44eV
C) -1.44eV
D) -5-08eV
Answer
568.5k+ views
Hint: In this question, we use the concept of photon energy, where the energy carried by a single photon is the product of frequency by Planck’s constant. After finding the energy of the photon, we will find the energy resultant after the atom absorbs a photon by subtracting the atom’s energy level or binding energy by the energy of the photon. The formula for the energy of photon is:
\[{{E}_{p}}=hf\]
The energy of the atom \[\left( {{E}_{a}} \right)\] after absorbing the photon energy \[\left( {{E}_{abs}} \right)\] is:
\[{{E}_{abs}}={{E}_{p}}+{{E}_{a}}\]
where \[{{E}_{p}}\] is the energy of the photon received, \[h\] is the Planck’s constant of \[6.626\times {{10}^{-34}}j\], \[f\] is the frequency that can also be written as \[\dfrac{c}{\lambda }\], \[c\] is the speed of light at \[288000\text{ }m/\sec \], wavelength of a photon absorbed \[860nm\].
Complete step by step solution:
The energy carried by the photon is inversely proportional to the wavelength of the photon absorbed; the formula for the energy is given as:
\[{{E}_{p}}=hf\]
Now, the frequency of the energy of the photon is
\[f=\dfrac{c}{\lambda }\]
Placing the value of the \[\lambda \] and the speed of light, we get the value of the frequency as:
\[f=\dfrac{c}{\lambda }\]
\[f=\dfrac{288000}{860}\]
Now multiplying the value of the frequency by the Planck’s constant, we get the energy of the photon as:
\[{{E}_{p}}=6.626\times {{10}^{-34}}\times \dfrac{288000}{860}\]
\[=1.44\text{ }eV\]
The energy generated by the photon when moving through the energy levels is given as \[1.44eV\].
Now as we know the energy of the photon, we can find the energy of the atom once the photon is absorbed by the atom. Hence, the net energy after the absorption of the photon is given as:
The net energy of the atom is equal to the subtraction of energy of the photon by the previous energy of the atom.
\[{{E}_{abs}}={{E}_{p}}-{{E}_{a}}\]
\[{{E}_{abs}}=1.44+\left( -6.52 \right)\]
\[{{E}_{abs}}=-5.08\text{ }eV\]
Therefore, the energy formed after absorbing the photon is \[{{E}_{abs}}=-5.08\text{ }eV\].
Note: The energy of the atom is also known as the binding energy, the energy that the atom has in the level that is in before absorbing or emission of energy. When the atom absorbs a photon it either jumps to another level or recedes to another level. Now, another formula to find the energy of the photon is based on the number of energy levels i.e.
\[E=-\dfrac{13.6}{n}eV\]
But here we use the formula:
\[{{E}_{p}}=hf\]
To find the energy level as the number of levels or rings of the atom are not known.
\[{{E}_{p}}=hf\]
The energy of the atom \[\left( {{E}_{a}} \right)\] after absorbing the photon energy \[\left( {{E}_{abs}} \right)\] is:
\[{{E}_{abs}}={{E}_{p}}+{{E}_{a}}\]
where \[{{E}_{p}}\] is the energy of the photon received, \[h\] is the Planck’s constant of \[6.626\times {{10}^{-34}}j\], \[f\] is the frequency that can also be written as \[\dfrac{c}{\lambda }\], \[c\] is the speed of light at \[288000\text{ }m/\sec \], wavelength of a photon absorbed \[860nm\].
Complete step by step solution:
The energy carried by the photon is inversely proportional to the wavelength of the photon absorbed; the formula for the energy is given as:
\[{{E}_{p}}=hf\]
Now, the frequency of the energy of the photon is
\[f=\dfrac{c}{\lambda }\]
Placing the value of the \[\lambda \] and the speed of light, we get the value of the frequency as:
\[f=\dfrac{c}{\lambda }\]
\[f=\dfrac{288000}{860}\]
Now multiplying the value of the frequency by the Planck’s constant, we get the energy of the photon as:
\[{{E}_{p}}=6.626\times {{10}^{-34}}\times \dfrac{288000}{860}\]
\[=1.44\text{ }eV\]
The energy generated by the photon when moving through the energy levels is given as \[1.44eV\].
Now as we know the energy of the photon, we can find the energy of the atom once the photon is absorbed by the atom. Hence, the net energy after the absorption of the photon is given as:
The net energy of the atom is equal to the subtraction of energy of the photon by the previous energy of the atom.
\[{{E}_{abs}}={{E}_{p}}-{{E}_{a}}\]
\[{{E}_{abs}}=1.44+\left( -6.52 \right)\]
\[{{E}_{abs}}=-5.08\text{ }eV\]
Therefore, the energy formed after absorbing the photon is \[{{E}_{abs}}=-5.08\text{ }eV\].
Note: The energy of the atom is also known as the binding energy, the energy that the atom has in the level that is in before absorbing or emission of energy. When the atom absorbs a photon it either jumps to another level or recedes to another level. Now, another formula to find the energy of the photon is based on the number of energy levels i.e.
\[E=-\dfrac{13.6}{n}eV\]
But here we use the formula:
\[{{E}_{p}}=hf\]
To find the energy level as the number of levels or rings of the atom are not known.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

