Answer
Verified
429.9k+ views
Hint: First we will compare given formula to actual electric field formula $\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$after that we will convert the unit vectors 6y – 8z into direction vector then after we can find $\widehat{s}$after comparing equation.
Formula used:
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$
Complete answer:
It is given that the electric field,
$\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]....\left( 1 \right)$
In order to find direction of propagation $\widehat{s}$we have to compare above equation to actual electric field equation and that equation is
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]....\left( 2 \right)$
Where,
${{E}_{0}}$ = initial electric field.
ω = angular velocity
t = time
$\widehat{s}$= propagation vector
k = resultant vector.
Now in order to compare both equations we have to convert equation (1) into direction vector. Now it is given that direction of y is $\widehat{j}$ vector and z is represented by $\widehat{k}$ vector so that,
$6y-8z=6\widehat{j}-8\widehat{k}$
Now equation (1) can be written as,
$\begin{align}
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+\left( 6\widehat{j}-8\widehat{k} \right) \right) \\
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+(-\left( -6\widehat{j}+8\widehat{k} \right) \right) \\
& \therefore \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t-\left( 8\widehat{k}-6\widehat{j} \right) \right)......(3) \\
\end{align}$
Now comparing equation (2) and (3) we can get
$k\widehat{s}=8\widehat{k}-6\widehat{j}......\left( 4 \right)$
Here k is resultant vector to find k we have to use below formula
$\begin{align}
& \Rightarrow k=\sqrt{{{\left( x\widehat{i} \right)}^{2}}+{{\left( y\widehat{j} \right)}^{2}}+{{\left( z\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 6\widehat{j} \right)}^{2}}+{{\left( -8\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{36+64} \\
& \Rightarrow k=\sqrt{100} \\
& \therefore k=10......\left( 5 \right) \\
\end{align}$
Now put the value of k in equation (4)
$\begin{align}
& \Rightarrow 10\left( \widehat{s} \right)=8\widehat{k}-6\widehat{j} \\
& \Rightarrow \widehat{s}=\dfrac{8\widehat{k}-6\widehat{j}}{10} \\
\end{align}$
$\therefore \widehat{s}=\dfrac{4\widehat{k}-3\widehat{j}}{5}$
Here $\widehat{s}$is direction of propagation of the light.
So hence the correct option is (C) .
Note:
So when we compare both the equations then we have to see the sign of the equation for example in equation (3) (I) will take negative (-ve) sign common so that the ( I) can relate the equation and can match the negative (-ve) sign with the other equation. So the correct option is (C).
Formula used:
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$
Complete answer:
It is given that the electric field,
$\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]....\left( 1 \right)$
In order to find direction of propagation $\widehat{s}$we have to compare above equation to actual electric field equation and that equation is
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]....\left( 2 \right)$
Where,
${{E}_{0}}$ = initial electric field.
ω = angular velocity
t = time
$\widehat{s}$= propagation vector
k = resultant vector.
Now in order to compare both equations we have to convert equation (1) into direction vector. Now it is given that direction of y is $\widehat{j}$ vector and z is represented by $\widehat{k}$ vector so that,
$6y-8z=6\widehat{j}-8\widehat{k}$
Now equation (1) can be written as,
$\begin{align}
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+\left( 6\widehat{j}-8\widehat{k} \right) \right) \\
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+(-\left( -6\widehat{j}+8\widehat{k} \right) \right) \\
& \therefore \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t-\left( 8\widehat{k}-6\widehat{j} \right) \right)......(3) \\
\end{align}$
Now comparing equation (2) and (3) we can get
$k\widehat{s}=8\widehat{k}-6\widehat{j}......\left( 4 \right)$
Here k is resultant vector to find k we have to use below formula
$\begin{align}
& \Rightarrow k=\sqrt{{{\left( x\widehat{i} \right)}^{2}}+{{\left( y\widehat{j} \right)}^{2}}+{{\left( z\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 6\widehat{j} \right)}^{2}}+{{\left( -8\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{36+64} \\
& \Rightarrow k=\sqrt{100} \\
& \therefore k=10......\left( 5 \right) \\
\end{align}$
Now put the value of k in equation (4)
$\begin{align}
& \Rightarrow 10\left( \widehat{s} \right)=8\widehat{k}-6\widehat{j} \\
& \Rightarrow \widehat{s}=\dfrac{8\widehat{k}-6\widehat{j}}{10} \\
\end{align}$
$\therefore \widehat{s}=\dfrac{4\widehat{k}-3\widehat{j}}{5}$
Here $\widehat{s}$is direction of propagation of the light.
So hence the correct option is (C) .
Note:
So when we compare both the equations then we have to see the sign of the equation for example in equation (3) (I) will take negative (-ve) sign common so that the ( I) can relate the equation and can match the negative (-ve) sign with the other equation. So the correct option is (C).
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE