Answer
Verified
437.7k+ views
Hint:Here in this question coulomb force will be acting on charge which is a conservative force, such that work done charge is equal to kinetic energy gained by charge.
Complete Step by step Solution:
Given that an electron is of mass m, charge e, and potential difference is v
$\eqalign{
& {\text{Work done, by a charge in motion}} \cr
& {\text{W = e V}} \cr
& {\text{This work done W }}{\text{is converted into Kinetic energy}} \cr
& \Rightarrow {\text{ Kinetic energy = W}} \cr
& \Rightarrow \dfrac{1}{2}{\text{ m (}}{{\text{v}}^2}{\text{ - }}{{\text{u}}^2}{\text{) = eV}} \cr
& {\text{Also u is initial speed, so u = 0}} \cr
& \Rightarrow \dfrac{1}{2}{\text{ m }}{{\text{v}}^2}{\text{ = e V}} \cr
& \Rightarrow {\text{ }}{{\text{v}}^{^2}} = {\text{ }}\dfrac{{2{\text{ eV}}}}{{\text{m}}} \cr
& \therefore {\text{ v = }}\sqrt {\dfrac{{2{\text{ eV}}}}{{\text{m}}}} \cr} $
Additional Information: When a free positive charge q is accelerated by an electric field, it is given kinetic energy. The process is analogous to an object accelerated by a gravitational field. It is as if the charge is descending an electric hill where its electric potential energy is converted into kinetic energy. Let's explore the work done on a charge q by the electric field in this process, so that we can develop a definition of electric potential energy.
The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken. This is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative, it is possible to define a potential energy associated with the force, and it is generally easier to deal with potential energy (because it depends only on position) than to calculate work directly.
Notes: The magnetic force acts in such a way that the direction of the magnetic force and the velocity are always perpendicular to each other. If the force and velocity are perpendicular, the force and displacement are also perpendicular, then W = FS cos q, if q = 90, the work done will be zero.
Complete Step by step Solution:
Given that an electron is of mass m, charge e, and potential difference is v
$\eqalign{
& {\text{Work done, by a charge in motion}} \cr
& {\text{W = e V}} \cr
& {\text{This work done W }}{\text{is converted into Kinetic energy}} \cr
& \Rightarrow {\text{ Kinetic energy = W}} \cr
& \Rightarrow \dfrac{1}{2}{\text{ m (}}{{\text{v}}^2}{\text{ - }}{{\text{u}}^2}{\text{) = eV}} \cr
& {\text{Also u is initial speed, so u = 0}} \cr
& \Rightarrow \dfrac{1}{2}{\text{ m }}{{\text{v}}^2}{\text{ = e V}} \cr
& \Rightarrow {\text{ }}{{\text{v}}^{^2}} = {\text{ }}\dfrac{{2{\text{ eV}}}}{{\text{m}}} \cr
& \therefore {\text{ v = }}\sqrt {\dfrac{{2{\text{ eV}}}}{{\text{m}}}} \cr} $
Additional Information: When a free positive charge q is accelerated by an electric field, it is given kinetic energy. The process is analogous to an object accelerated by a gravitational field. It is as if the charge is descending an electric hill where its electric potential energy is converted into kinetic energy. Let's explore the work done on a charge q by the electric field in this process, so that we can develop a definition of electric potential energy.
The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken. This is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative, it is possible to define a potential energy associated with the force, and it is generally easier to deal with potential energy (because it depends only on position) than to calculate work directly.
Notes: The magnetic force acts in such a way that the direction of the magnetic force and the velocity are always perpendicular to each other. If the force and velocity are perpendicular, the force and displacement are also perpendicular, then W = FS cos q, if q = 90, the work done will be zero.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE