An enemy plane is flying horizontally at an attitude of $2 km$ with a speed of $300 m{s^{ - 1}}.$ An army man with an anti-craft gun on the ground fires a shell with speed of $600 m{s^{ - 1}},$when the enemy plane is directly overhead. At what angle from the vertical should the gun be fired so as to hit the plane?
\[
A.\;{\text{90}}^\circ \\
B.\;6{\text{0}}^\circ \\
C.\;45^\circ \\
D.\;3{\text{0}}^\circ \\
\]
Answer
Verified
473.1k+ views
Hint:First,calculate distance travelled by using the given terms such as velocity. Here, distance travelled by the plane and the shell fired are the same. So equate them to get the required distance and then find the value of the angle made by the man to fire.
Complete step by step answer:
Let us draw the figure, to understand quickly and properly,
Velocity of the plane, $v = 300m/s$
Let initial angle at which man fires is $ = \theta $
Let P be the point at which it hit an enemy plane.
Initial speed of the fire shell, $v = 600m/s$
Elevation is given at $2km$
Let “t” be the time at which it hit,
Therefore distance travelled by plane in the horizontal direction$ = 300 \times t$ ....... (a)
Shell travelled in the x-direction =$ = 600 \times \cos \theta \times t$ ........ (b)
Now, equation (a) and (b) are equal as they travel the equal distance.
$300 \times t = 600 \times \cos \theta \times t$
Simplify the above equation –
Take “t” common from both the sides of the equation and remove them.
$300 = 600\cos \theta $
Make unknown angle the subject –
$
\cos \theta = \dfrac{{300}}{{600}} \\
\Rightarrow \cos \theta = \dfrac{1}{2} \\
\Rightarrow \theta = {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \theta = 60^\circ \\
$
It makes angle, $\theta = 60^\circ $therefore, vertical angle is $ = 90^\circ - \theta = 90^\circ - 60^\circ = 30^\circ $
Therefore, the required answer is - The gun should be fired at an angle $30^\circ $ from the vertical so as to hit the plane.
Hence, from the given multiple choices – option D is the correct answer.
Note:Remember all the different trigonometric angles which are the angles given by the ratios of the trigonometric functions. The most important trigonometric angles are $0^\circ ,{\text{ 3}}0^\circ ,\;45^\circ ,{\text{ 6}}0^\circ {\text{ and 9}}0^\circ $. Remember the values of these angles for quick substitution for further simplification.
Complete step by step answer:
Let us draw the figure, to understand quickly and properly,
Velocity of the plane, $v = 300m/s$
Let initial angle at which man fires is $ = \theta $
Let P be the point at which it hit an enemy plane.
Initial speed of the fire shell, $v = 600m/s$
Elevation is given at $2km$
Let “t” be the time at which it hit,
Therefore distance travelled by plane in the horizontal direction$ = 300 \times t$ ....... (a)
Shell travelled in the x-direction =$ = 600 \times \cos \theta \times t$ ........ (b)
Now, equation (a) and (b) are equal as they travel the equal distance.
$300 \times t = 600 \times \cos \theta \times t$
Simplify the above equation –
Take “t” common from both the sides of the equation and remove them.
$300 = 600\cos \theta $
Make unknown angle the subject –
$
\cos \theta = \dfrac{{300}}{{600}} \\
\Rightarrow \cos \theta = \dfrac{1}{2} \\
\Rightarrow \theta = {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \theta = 60^\circ \\
$
It makes angle, $\theta = 60^\circ $therefore, vertical angle is $ = 90^\circ - \theta = 90^\circ - 60^\circ = 30^\circ $
Therefore, the required answer is - The gun should be fired at an angle $30^\circ $ from the vertical so as to hit the plane.
Hence, from the given multiple choices – option D is the correct answer.
Note:Remember all the different trigonometric angles which are the angles given by the ratios of the trigonometric functions. The most important trigonometric angles are $0^\circ ,{\text{ 3}}0^\circ ,\;45^\circ ,{\text{ 6}}0^\circ {\text{ and 9}}0^\circ $. Remember the values of these angles for quick substitution for further simplification.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE