Answer
Verified
111.9k+ views
Hint: For solving this question we have to consider the concepts of heat engine, we have to use temperature in the standard unit of kelvin here. With the help of efficiency formula and work done by heat engine we will determine the value of X. Mainly, one must calculate efficiency and work done using efficiency.
Formula used:
1. \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Where, \[\eta \] is the efficiency of the heat engine, \[{T_1}\] is the temperature at which it absorbs and \[{T_2}\] is the temperature at which it exhausts.
2. \[W = Q\eta \]
Where, \[W\]is work done by the heat engine and \[Q\]is the source heat in kilo calorie.
Complete answer:
Let us begin with the conversion of the temperature into standard units such as
\[{T_1} = {327^o}C = (327 + 273)K = 600K\]
\[{T_2} = {127^o}C = (127 + 273)K = 400K\]
So, let’s begin with calculating the efficiency of the heat engine, we have
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Let us substitute all the given values in the formula above, we get
\[ \Rightarrow \eta = 1 - \dfrac{{400K}}{{600K}}\]
\[ \Rightarrow \eta = 1 - \dfrac{2}{3} = 1 - 0.66 = 0.34\]
\[ \Rightarrow \eta = 0.34\]
Now, we have to find work for per kilo calorie, for that we have a formula for work done as below:
\[W = Q\eta \]
But, the source heat is \[Q = H = 1kcal\]
Also, remember that
\[1kcal = 4.2 \times {10^3}joule\]
Let us put all these values in the formula for work done for calculating total work.
\[ \Rightarrow W = 4.2 \times {10^3}joule \times 0.34\]
\[ \Rightarrow W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
But here work done is given in the form of \[X\]. Therefore,
\[X = W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
\[X = 1428J\]
Therefore, \[\dfrac{X}{5}\] is given by:
\[\dfrac{X}{5} = \dfrac{{1428J}}{5} = 285.6J\]
So, the answer is \[285.6J\].
Note: Here, the question is designed in such a way that there is just one concept that has been used to work efficiently. We have to recall all the important points from the heat engine and apply it over here.
Formula used:
1. \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Where, \[\eta \] is the efficiency of the heat engine, \[{T_1}\] is the temperature at which it absorbs and \[{T_2}\] is the temperature at which it exhausts.
2. \[W = Q\eta \]
Where, \[W\]is work done by the heat engine and \[Q\]is the source heat in kilo calorie.
Complete answer:
Let us begin with the conversion of the temperature into standard units such as
\[{T_1} = {327^o}C = (327 + 273)K = 600K\]
\[{T_2} = {127^o}C = (127 + 273)K = 400K\]
So, let’s begin with calculating the efficiency of the heat engine, we have
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Let us substitute all the given values in the formula above, we get
\[ \Rightarrow \eta = 1 - \dfrac{{400K}}{{600K}}\]
\[ \Rightarrow \eta = 1 - \dfrac{2}{3} = 1 - 0.66 = 0.34\]
\[ \Rightarrow \eta = 0.34\]
Now, we have to find work for per kilo calorie, for that we have a formula for work done as below:
\[W = Q\eta \]
But, the source heat is \[Q = H = 1kcal\]
Also, remember that
\[1kcal = 4.2 \times {10^3}joule\]
Let us put all these values in the formula for work done for calculating total work.
\[ \Rightarrow W = 4.2 \times {10^3}joule \times 0.34\]
\[ \Rightarrow W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
But here work done is given in the form of \[X\]. Therefore,
\[X = W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
\[X = 1428J\]
Therefore, \[\dfrac{X}{5}\] is given by:
\[\dfrac{X}{5} = \dfrac{{1428J}}{5} = 285.6J\]
So, the answer is \[285.6J\].
Note: Here, the question is designed in such a way that there is just one concept that has been used to work efficiently. We have to recall all the important points from the heat engine and apply it over here.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line