Answer
Verified
444.6k+ views
Hint:Ideal gas is defined as that gas in which all collisions between molecules are perfectly elastic and there is no interactive force of attraction is observed. The equation for Ideal gas is given as:
$PV = nRT$
Here, Pressure is determined by ‘P’, Volume is represented by ’V’ and ‘n’ is the number of moles and ‘R’ is the gas constant and ‘T’ is represented by Temperature.
Complete step by step answer:
We know in case of isothermal process temperature is constant and according to Boyle's law at a constant temperature, the volume of a given amount of a gas is inversely proportional to the pressure of that gas. The relation between Pressure and Volume can be mathematically written as:
$P \propto \dfrac{1}{V}$
$ \Rightarrow {\text{PV}} = {\text{Constant}}$
Or
${P_1}{V_1} = {P_2}{V_2}$ (1)
Suppose ${P_1} = P$ and ${V_1} = V$, Final volume ${V_2}$ is given as $16V$. We need to find the final pressure ${P_2}$. On putting the value in equation 1, we get:
$P \times V = {P_2} \times 16V$
$ \Rightarrow {P_2} = \dfrac{{P \times V}}{{16V}} = \dfrac{P}{{16}}$
As we know for the adiabatic process the equation is written as:
$P{V^\gamma } = {\text{constant}}$
Or we can write:
${P_2}{({V_2})^\gamma } = {P_3}{({V_3})^\gamma }$ (2)
On putting the value of ${P_2},{V_2}$ and $\gamma $ in equation (2) we get:
$\dfrac{P}{{16}} \times {(16V)^{1.5}} = {P_3}{(V)^{1.5}}$
$ \Rightarrow \dfrac{P}{{16}} \times {(16)^{1.5}} = {P_3}$
And hence on doing the simplification,we have
$ \Rightarrow \sqrt {16} \times P = {P_3}$
$ \Rightarrow 4P = {P_3}$
Hence the final pressure is 4P.
Thus the correct answer is option C.
Additional information:
There exist different equations that are better in approximating the behaviour of gas and it is known as the Van der Waals equation that adds two new parameters, i.e. Volume and force of attraction between them, and at lower temperatures, the van der Waals equation reduces to the ideal gas equation.
Note:
At low pressures, no significant force of attraction exists between the gas molecules and they behave like an ideal gas but at higher pressures as the molecules of gas come closer the force of attraction becomes significant, and ideal gas behaviour ceases to exist.
$PV = nRT$
Here, Pressure is determined by ‘P’, Volume is represented by ’V’ and ‘n’ is the number of moles and ‘R’ is the gas constant and ‘T’ is represented by Temperature.
Complete step by step answer:
We know in case of isothermal process temperature is constant and according to Boyle's law at a constant temperature, the volume of a given amount of a gas is inversely proportional to the pressure of that gas. The relation between Pressure and Volume can be mathematically written as:
$P \propto \dfrac{1}{V}$
$ \Rightarrow {\text{PV}} = {\text{Constant}}$
Or
${P_1}{V_1} = {P_2}{V_2}$ (1)
Suppose ${P_1} = P$ and ${V_1} = V$, Final volume ${V_2}$ is given as $16V$. We need to find the final pressure ${P_2}$. On putting the value in equation 1, we get:
$P \times V = {P_2} \times 16V$
$ \Rightarrow {P_2} = \dfrac{{P \times V}}{{16V}} = \dfrac{P}{{16}}$
As we know for the adiabatic process the equation is written as:
$P{V^\gamma } = {\text{constant}}$
Or we can write:
${P_2}{({V_2})^\gamma } = {P_3}{({V_3})^\gamma }$ (2)
On putting the value of ${P_2},{V_2}$ and $\gamma $ in equation (2) we get:
$\dfrac{P}{{16}} \times {(16V)^{1.5}} = {P_3}{(V)^{1.5}}$
$ \Rightarrow \dfrac{P}{{16}} \times {(16)^{1.5}} = {P_3}$
And hence on doing the simplification,we have
$ \Rightarrow \sqrt {16} \times P = {P_3}$
$ \Rightarrow 4P = {P_3}$
Hence the final pressure is 4P.
Thus the correct answer is option C.
Additional information:
There exist different equations that are better in approximating the behaviour of gas and it is known as the Van der Waals equation that adds two new parameters, i.e. Volume and force of attraction between them, and at lower temperatures, the van der Waals equation reduces to the ideal gas equation.
Note:
At low pressures, no significant force of attraction exists between the gas molecules and they behave like an ideal gas but at higher pressures as the molecules of gas come closer the force of attraction becomes significant, and ideal gas behaviour ceases to exist.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE