Answer
Verified
398.1k+ views
Hint: As a first step, one could read the given question well and hence note down the given values. Then you could find the value of inductance and also resistance from them. After that you could find the net impedance and then find the current through the circuit mentioned accordingly.
Formula used:
Inductive reactance,
${{X}_{L}}=2\pi L\times f$
Impedance,
$Z=\sqrt{{{R}^{2}}+{{X}_{L}}^{2}}$
Current,
$I=\dfrac{\varepsilon }{Z}$
Complete step-by-step solution:
In the question, we are given an inductor that is known to take a current of 10A on connecting it to a 25V, 50Hz AC supply. Connecting a pure resistor across this source draws a current of 12.5A. We are supposed to find the current through the circuit if they are connected in series across a $100\sqrt{2}V$, 40Hz source.
For the inductor alone we have,
$\omega L=2\pi fL=\dfrac{\varepsilon }{I}$
$\Rightarrow 2\pi L=\dfrac{\varepsilon }{fI}=\dfrac{125}{50\times 10}=0.25$…………………………………. (1)
For the resistor we have,
$R=\dfrac{\varepsilon }{I}=\dfrac{125}{12.5}=10\Omega $…………………………………… (2)
Now for the series connection of the above two components across a $100\sqrt{2}V$, 40Hz source we have,
The inductive reactance as,
${{X}_{L}}=2\pi L\times f$
From (1),
${{X}_{L}}=0.25\times 40=10\Omega $………………………………….. (3)
Now the net impedance of the circuit could be given by,
$Z=\sqrt{{{R}^{2}}+{{X}_{L}}^{2}}$
From (2) and (3),
$Z=\sqrt{{{10}^{2}}+{{10}^{2}}}=\sqrt{200}=10\sqrt{2}$
The current could be given by,
$I=\dfrac{\varepsilon }{Z}=\dfrac{100\sqrt{2}}{10\sqrt{2}}$
$\therefore I=10A$
Therefore, we found the current through the circuit under given conditions to be 10A.
Note: Impedance is the opposition offered to the current flowing in a circuit. It can be considered similar to the resistance in a purely resistive circuit. But here when capacitor and inductor are present in the circuit, their effects are also taken into account along with the resistance. It is also measured in ohms.
Formula used:
Inductive reactance,
${{X}_{L}}=2\pi L\times f$
Impedance,
$Z=\sqrt{{{R}^{2}}+{{X}_{L}}^{2}}$
Current,
$I=\dfrac{\varepsilon }{Z}$
Complete step-by-step solution:
In the question, we are given an inductor that is known to take a current of 10A on connecting it to a 25V, 50Hz AC supply. Connecting a pure resistor across this source draws a current of 12.5A. We are supposed to find the current through the circuit if they are connected in series across a $100\sqrt{2}V$, 40Hz source.
For the inductor alone we have,
$\omega L=2\pi fL=\dfrac{\varepsilon }{I}$
$\Rightarrow 2\pi L=\dfrac{\varepsilon }{fI}=\dfrac{125}{50\times 10}=0.25$…………………………………. (1)
For the resistor we have,
$R=\dfrac{\varepsilon }{I}=\dfrac{125}{12.5}=10\Omega $…………………………………… (2)
Now for the series connection of the above two components across a $100\sqrt{2}V$, 40Hz source we have,
The inductive reactance as,
${{X}_{L}}=2\pi L\times f$
From (1),
${{X}_{L}}=0.25\times 40=10\Omega $………………………………….. (3)
Now the net impedance of the circuit could be given by,
$Z=\sqrt{{{R}^{2}}+{{X}_{L}}^{2}}$
From (2) and (3),
$Z=\sqrt{{{10}^{2}}+{{10}^{2}}}=\sqrt{200}=10\sqrt{2}$
The current could be given by,
$I=\dfrac{\varepsilon }{Z}=\dfrac{100\sqrt{2}}{10\sqrt{2}}$
$\therefore I=10A$
Therefore, we found the current through the circuit under given conditions to be 10A.
Note: Impedance is the opposition offered to the current flowing in a circuit. It can be considered similar to the resistance in a purely resistive circuit. But here when capacitor and inductor are present in the circuit, their effects are also taken into account along with the resistance. It is also measured in ohms.
Recently Updated Pages
Points A and B are situated along the extended axis class 12 physics JEE_Main
Two identical pn junctions may be connected in series class 12 physics JEE_Main
A piece of copper and another of germanium are cooled class 12 physics JEE_Main
A piece of semiconductor is connected in series in class 12 phy sec 1 JEE_Main
In a pn junction diode not connected to any circui class 12 physics JEE_Main
The width of depletion region in a pn junction is 500 class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE