Answer
Verified
497.7k+ views
Hint: First you have to find the probability of driver that means either driver is scooter driver or car driver or truck driver. Then you have to find the probability of a driver with an accident that means either truck driver met accident or car driver or scooter driver. And then apply Bayes theorem to get an answer.
Complete step-by-step answer:
Let E1,E2, and E3 be the respective events that the driver is a scooter driver, a car driver, and a truck driver.
Let A be the event that the person meets with an accident.
There are 2000 scooter drivers, 4000 car drivers, and 6000 truck drivers
Total number of drivers = 2000 +4000+ 6000 =12000
$P\left( {{E_1}} \right) = P\left( {{\text{Driver is a scooter driver}}} \right) = \dfrac{{2000}}{{12000}} = \dfrac{1}{6}$
$P\left( {{E_2}} \right) = P\left( {{\text{Driver is a car driver}}} \right) = \dfrac{{4000}}{{12000}} = \dfrac{1}{3}$
$P\left( {{E_3}} \right) = P\left( {{\text{Driver is a truck driver}}} \right) = \dfrac{{6000}}{{12000}} = \dfrac{1}{2}$
$P\left( {\dfrac{A}{{{E_1}}}} \right) = P\left( {{\text{Scooter driver with an accident}}} \right) = 0.01 = \dfrac{1}{{100}}$
$P\left( {\dfrac{A}{{{E_2}}}} \right) = P\left( {{\text{Car driver with an accident}}} \right) = 0.03 = \dfrac{3}{{100}}$
$P\left( {\dfrac{A}{{{E_3}}}} \right) = P\left( {{\text{Truck driver with an accident}}} \right) = 0.15 = \dfrac{{15}}{{100}}$
The probability that driver is a scooter driver , given that he met with an accident , is given by$P\left( {\dfrac{{{E_1}}}{A}} \right)$
By using Baye’s theorem , we obtain
$P\left( {\dfrac{{{E_1}}}{A}} \right) = \dfrac{{P\left( {{E_1}} \right).P\left( {\dfrac{A}{{{E_1}}}} \right)}}{{P\left( {{E_1}} \right).P\left( {\dfrac{A}{{{E_1}}}} \right) + P\left( {{E_2}} \right).P\left( {\dfrac{A}{{{E_2}}}} \right) + P\left( {{E_3}} \right).P\left( {\dfrac{A}{{{E_3}}}} \right)}}$
$ = \dfrac{{\dfrac{1}{6}.\dfrac{1}{{100}}}}{{\dfrac{1}{6}.\dfrac{1}{{100}} + \dfrac{1}{3}.\dfrac{3}{{100}} + \dfrac{1}{2}.\dfrac{{15}}{{100}}}}$
$ = \dfrac{{\dfrac{1}{6}.\dfrac{1}{{100}}}}{{\dfrac{1}{{100}}\left( {\dfrac{1}{6} + 1 + \dfrac{{15}}{2}} \right)}} = \dfrac{{\dfrac{1}{6}}}{{\dfrac{{52}}{6}}} = \dfrac{1}{6} \times \dfrac{{12}}{{104}} = \dfrac{1}{{52}} = 0.019$
Note: Whenever you get this type of question the key concept of solving is you should have knowledge of Baye’s theorem and you have to understand $P\left( {\dfrac{A}{{{E_1}}}} \right)$ means probability of event A after completion of event ${{\text{E}}_1}$. And also understand that probability means number of favorable outcomes divided by number of total outcomes.
Complete step-by-step answer:
Let E1,E2, and E3 be the respective events that the driver is a scooter driver, a car driver, and a truck driver.
Let A be the event that the person meets with an accident.
There are 2000 scooter drivers, 4000 car drivers, and 6000 truck drivers
Total number of drivers = 2000 +4000+ 6000 =12000
$P\left( {{E_1}} \right) = P\left( {{\text{Driver is a scooter driver}}} \right) = \dfrac{{2000}}{{12000}} = \dfrac{1}{6}$
$P\left( {{E_2}} \right) = P\left( {{\text{Driver is a car driver}}} \right) = \dfrac{{4000}}{{12000}} = \dfrac{1}{3}$
$P\left( {{E_3}} \right) = P\left( {{\text{Driver is a truck driver}}} \right) = \dfrac{{6000}}{{12000}} = \dfrac{1}{2}$
$P\left( {\dfrac{A}{{{E_1}}}} \right) = P\left( {{\text{Scooter driver with an accident}}} \right) = 0.01 = \dfrac{1}{{100}}$
$P\left( {\dfrac{A}{{{E_2}}}} \right) = P\left( {{\text{Car driver with an accident}}} \right) = 0.03 = \dfrac{3}{{100}}$
$P\left( {\dfrac{A}{{{E_3}}}} \right) = P\left( {{\text{Truck driver with an accident}}} \right) = 0.15 = \dfrac{{15}}{{100}}$
The probability that driver is a scooter driver , given that he met with an accident , is given by$P\left( {\dfrac{{{E_1}}}{A}} \right)$
By using Baye’s theorem , we obtain
$P\left( {\dfrac{{{E_1}}}{A}} \right) = \dfrac{{P\left( {{E_1}} \right).P\left( {\dfrac{A}{{{E_1}}}} \right)}}{{P\left( {{E_1}} \right).P\left( {\dfrac{A}{{{E_1}}}} \right) + P\left( {{E_2}} \right).P\left( {\dfrac{A}{{{E_2}}}} \right) + P\left( {{E_3}} \right).P\left( {\dfrac{A}{{{E_3}}}} \right)}}$
$ = \dfrac{{\dfrac{1}{6}.\dfrac{1}{{100}}}}{{\dfrac{1}{6}.\dfrac{1}{{100}} + \dfrac{1}{3}.\dfrac{3}{{100}} + \dfrac{1}{2}.\dfrac{{15}}{{100}}}}$
$ = \dfrac{{\dfrac{1}{6}.\dfrac{1}{{100}}}}{{\dfrac{1}{{100}}\left( {\dfrac{1}{6} + 1 + \dfrac{{15}}{2}} \right)}} = \dfrac{{\dfrac{1}{6}}}{{\dfrac{{52}}{6}}} = \dfrac{1}{6} \times \dfrac{{12}}{{104}} = \dfrac{1}{{52}} = 0.019$
Note: Whenever you get this type of question the key concept of solving is you should have knowledge of Baye’s theorem and you have to understand $P\left( {\dfrac{A}{{{E_1}}}} \right)$ means probability of event A after completion of event ${{\text{E}}_1}$. And also understand that probability means number of favorable outcomes divided by number of total outcomes.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE