Answer
Verified
465k+ views
Hint:Voltage gain is defined as the ratio of the output voltage to the input voltage. The input resistance is the ratio of change in input voltage to change in input current.
Complete step by step answer:
So we are given a NPN transistor in common emitter mode, the input resistance can be calculated if we know the change in input current when an input voltage is applied. So the input resistance is,
${{\text{R}}_{\text{i}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{i}}}}$
${{R}_{i}}=\dfrac{10\times {{10}^{-3}}}{15\times {{10}^{-6}}}$
$\therefore {{\text{R}}_{\text{i}}}=0.67K\Omega $
So the input resistance is ${{\text{R}}_{\text{i}}}=0.67K\Omega $.
The voltage gain is defined as the ratio of change in the output voltage to the change in input voltage. We know that $\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}=\text{10mV}$, in order to calculate the change in output voltage we multiply the change in change in output current with the load resistance. So we can write,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{o}}}{{\text{R}}_{\text{L}}}$
Substituting the values of change in output voltage and load resistance, we get,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\left( 3\times {{10}^{-3}} \right)\left( 1000 \right)$
$\therefore \text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{3V}$
So the voltage gain is given by,
${{\text{A}}_{\text{v}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}$
${{\text{A}}_{\text{v}}}=\dfrac{3}{10\times {{10}^{-3}}}$
$\therefore {{\text{A}}_{\text{v}}}=300$
So the voltage gain for the transistor is ${{\text{A}}_{\text{v}}}=300$.
So the answer to the question is option (D)- $0.67k\Omega ,300$
Note:
The current gain of a transistor is defined as the ratio of output current to the input current. It is denoted by the Greek letter $\text{ }\!\!\beta\!\!\text{ }$ for common emitter configuration and $\text{ }\!\!\alpha\!\!\text{ }$ for common base configuration.
The current gain in the common base configuration is defined by,
$\text{ }\!\!\alpha\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{e}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{e}}$ is the change in emitter current.
The current gain in the common emitter configuration is defined by,
$\text{ }\!\!\beta\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}$ is the change in emitter current.
Complete step by step answer:
So we are given a NPN transistor in common emitter mode, the input resistance can be calculated if we know the change in input current when an input voltage is applied. So the input resistance is,
${{\text{R}}_{\text{i}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{i}}}}$
${{R}_{i}}=\dfrac{10\times {{10}^{-3}}}{15\times {{10}^{-6}}}$
$\therefore {{\text{R}}_{\text{i}}}=0.67K\Omega $
So the input resistance is ${{\text{R}}_{\text{i}}}=0.67K\Omega $.
The voltage gain is defined as the ratio of change in the output voltage to the change in input voltage. We know that $\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}=\text{10mV}$, in order to calculate the change in output voltage we multiply the change in change in output current with the load resistance. So we can write,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{o}}}{{\text{R}}_{\text{L}}}$
Substituting the values of change in output voltage and load resistance, we get,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\left( 3\times {{10}^{-3}} \right)\left( 1000 \right)$
$\therefore \text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{3V}$
So the voltage gain is given by,
${{\text{A}}_{\text{v}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}$
${{\text{A}}_{\text{v}}}=\dfrac{3}{10\times {{10}^{-3}}}$
$\therefore {{\text{A}}_{\text{v}}}=300$
So the voltage gain for the transistor is ${{\text{A}}_{\text{v}}}=300$.
So the answer to the question is option (D)- $0.67k\Omega ,300$
Note:
The current gain of a transistor is defined as the ratio of output current to the input current. It is denoted by the Greek letter $\text{ }\!\!\beta\!\!\text{ }$ for common emitter configuration and $\text{ }\!\!\alpha\!\!\text{ }$ for common base configuration.
The current gain in the common base configuration is defined by,
$\text{ }\!\!\alpha\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{e}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{e}}$ is the change in emitter current.
The current gain in the common emitter configuration is defined by,
$\text{ }\!\!\beta\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}$ is the change in emitter current.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE