Answer
Verified
441.3k+ views
Hint : To find the amount of work done to bring the object to rest we have to find the energy of the moving object. Only then we can neutralize both and bring the object to rest.
Complete step by step answer
Energy of an object or substance is its ability to do work. Energy can be found in different forms. Energy has many different forms that can be grouped into two major categories namely kinetic energy and potential energy.
Potential energy is the energy stored or conserved in an object or substance. This stored energy is based on the position, arrangement or state of the object or substance.
The kinetic energy is the energy of an object or substance that it possesses due to its motion. Having kinetic energy during its motion, the body maintains that same kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest.
Kinetic energy is a scalar quantity. It does not depend on direction. When we double the mass, the Kinetic energy is doubled and when we double the velocity, the kinetic energy increases by a factor of four.
Given,
An object of mass, $ m $ is moving with a constant velocity, $ v $
If an object is moving it possess kinetic energy
Kinetic energy $ = \raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $
$ m $ is the mass of the object.
$ v $ is the velocity of the object.
The work done on the object to bring the object to rest is the change in kinetic energy
Change in kinetic energy → Final kinetic energy - Initial Kinetic energy
Here we take the final kinetic energy as zero because the object is brought to rest.
The initial kinetic energy of the moving object is ½ mv2
Change in kinetic energy $ = {\text{ 0 - }}\raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $
Change in kinetic energy $ = {\text{ }} - {\text{ }}\raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $
$ - \raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $ work has to be done to bring the object to rest.
Note
The negative sign indicates we should do negative work to neutralize the kinetic energy the object possess i.e. the object possess $ \raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $ energy so we should do $ - \raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $ to bring the object to rest.
Complete step by step answer
Energy of an object or substance is its ability to do work. Energy can be found in different forms. Energy has many different forms that can be grouped into two major categories namely kinetic energy and potential energy.
Potential energy is the energy stored or conserved in an object or substance. This stored energy is based on the position, arrangement or state of the object or substance.
The kinetic energy is the energy of an object or substance that it possesses due to its motion. Having kinetic energy during its motion, the body maintains that same kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest.
Kinetic energy is a scalar quantity. It does not depend on direction. When we double the mass, the Kinetic energy is doubled and when we double the velocity, the kinetic energy increases by a factor of four.
Given,
An object of mass, $ m $ is moving with a constant velocity, $ v $
If an object is moving it possess kinetic energy
Kinetic energy $ = \raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $
$ m $ is the mass of the object.
$ v $ is the velocity of the object.
The work done on the object to bring the object to rest is the change in kinetic energy
Change in kinetic energy → Final kinetic energy - Initial Kinetic energy
Here we take the final kinetic energy as zero because the object is brought to rest.
The initial kinetic energy of the moving object is ½ mv2
Change in kinetic energy $ = {\text{ 0 - }}\raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $
Change in kinetic energy $ = {\text{ }} - {\text{ }}\raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $
$ - \raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $ work has to be done to bring the object to rest.
Note
The negative sign indicates we should do negative work to neutralize the kinetic energy the object possess i.e. the object possess $ \raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $ energy so we should do $ - \raise.5ex\hbox{ $ \scriptstyle 1 $ }\kern-.1em/
\kern-.15em\lower.25ex\hbox{ $ \scriptstyle 2 $ } {\text{ }}m{v^2} $ to bring the object to rest.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE