Answer
Verified
473.4k+ views
Hint: malus law is, when a plane-polarized light incident i.e. falls on the analyzer, then the intensity I of the transmitted light is found to be directly proportional to the square of the cosine of the angle between the axis of transmission of polarizer and analyzer.
Formula used:
$I = {I_0}{\cos ^2}\theta $
Where,
$I$=intensity of transmitted light
${I_0}$= intensity of incident light
$\theta $=angle between transmission axis of polarizer and analyzer.
Complete step by step solution:
Malus law states that the intensity of a beam of plane-polarized light after passing through a rotatable polarizer varies as the square of the cosine of the angle.
Mathematically given as below.
$I = {I_0}{\cos ^2}\theta $ (1)
Now, let us first write the information given in the question.
${I_0}$ =$32W{m^{ - 2}}$, intensity of final emerging light =$3W{m^{ - 2}}$.
We have to find the intensity of light transmitted by the first polarizer given below using Malus law from equation (1).
$I = {I_0}{\cos ^2}\theta $ (2)
Average value of cos2θ is ½.
Hence, equation (2) becomes,
$I = {I_0} \times \dfrac{1}{2}$
Now let us substitute the value of ${I_0}$ in the above equation.
$I = 32W{m^{ - 2}} \times \dfrac{1}{2}$
$ = 16W{m^{ - 2}}$
Therefore, the intensity of light transmitted by first polarizer is 16Wm-2.
Hence, option (B) is correct option.
Additional information:
When ‘
Θ=00 or 1800,
In such case, $I = {I_0}{\cos ^2}\theta $
⟹${I_0}{\cos ^2}{0^0}$
⇒${I_0}$
I.e. when the transmission axes of analyzer and polarizer are parallel to each other, then intensity of light transmitted from the analyzer is maximum.
When ‘
Θ=900,
In such case, $I = {I_0}{\cos ^2}\theta $
⟹${I_0}{\cos ^2}{90^0}$
⇒$0$
I.e. when the transmission axes of analyzer and polarizer are perpendicular to each other, then intensity of light transmitted from the analyzer is minimum.
Note:
Unpolarized light wave vibrates in more than one plane whereas polarized light wave vibrates in a single plane. The process of converting unpolarized light into polarized light is called polarization of light.
A polarizer is an optical device that converts unpolarized light into polarized light in some form.
The intensity of light is the power radiated per unit area where the area is measured plane perpendicular to the direction of propagation of energy. Its SI unit is \[W{m^{ - 2}}\].
Formula used:
$I = {I_0}{\cos ^2}\theta $
Where,
$I$=intensity of transmitted light
${I_0}$= intensity of incident light
$\theta $=angle between transmission axis of polarizer and analyzer.
Complete step by step solution:
Malus law states that the intensity of a beam of plane-polarized light after passing through a rotatable polarizer varies as the square of the cosine of the angle.
Mathematically given as below.
$I = {I_0}{\cos ^2}\theta $ (1)
Now, let us first write the information given in the question.
${I_0}$ =$32W{m^{ - 2}}$, intensity of final emerging light =$3W{m^{ - 2}}$.
We have to find the intensity of light transmitted by the first polarizer given below using Malus law from equation (1).
$I = {I_0}{\cos ^2}\theta $ (2)
Average value of cos2θ is ½.
Hence, equation (2) becomes,
$I = {I_0} \times \dfrac{1}{2}$
Now let us substitute the value of ${I_0}$ in the above equation.
$I = 32W{m^{ - 2}} \times \dfrac{1}{2}$
$ = 16W{m^{ - 2}}$
Therefore, the intensity of light transmitted by first polarizer is 16Wm-2.
Hence, option (B) is correct option.
Additional information:
When ‘
Θ=00 or 1800,
In such case, $I = {I_0}{\cos ^2}\theta $
⟹${I_0}{\cos ^2}{0^0}$
⇒${I_0}$
I.e. when the transmission axes of analyzer and polarizer are parallel to each other, then intensity of light transmitted from the analyzer is maximum.
When ‘
Θ=900,
In such case, $I = {I_0}{\cos ^2}\theta $
⟹${I_0}{\cos ^2}{90^0}$
⇒$0$
I.e. when the transmission axes of analyzer and polarizer are perpendicular to each other, then intensity of light transmitted from the analyzer is minimum.
Note:
Unpolarized light wave vibrates in more than one plane whereas polarized light wave vibrates in a single plane. The process of converting unpolarized light into polarized light is called polarization of light.
A polarizer is an optical device that converts unpolarized light into polarized light in some form.
The intensity of light is the power radiated per unit area where the area is measured plane perpendicular to the direction of propagation of energy. Its SI unit is \[W{m^{ - 2}}\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE