What is the angle between vectors \[2a\] and $4a$? What is the angle between vectors $3a$ and $-5a$?
Answer
Verified
408.3k+ views
Hint:The context of this question is the vector and scalar concepts and so the angle between the given vectors can only be answered with the help of the concept of the scalar multiplication of vectors.
Complete answer:
The resultant vector formed when a vector quantity is multiplied by a scalar quantity is the scalar quantity multiplied by the magnitude of the vector. However, the direction is the same. And in the question, the vectors have the magnitude of \[2a\] and $4a$ and so the vectors are $2\overrightarrow{a}$ and $4\overrightarrow{a}$. Hence, the direction of both the vectors is $\overrightarrow{a}$ and so they are collinear as they have the same direction and different magnitude. So, the answer to the first part of the question is zero as the vectors are collinear.
When we look at the second part of the question, the magnitude of two vectors are $3a$ and $-5a$ and so using the scalar multiplication of vectors, the two vectors are $3\overrightarrow{a}$ and $-5\overrightarrow{a}$. So, one vector is antiparallel to the other as one of the vectors has a positive direction and the other has a negative direction, so when the vectors are completely opposite in direction, the angle between the vectors is $180{}^\circ $.
Note:In many places, the answer to this question is given with the help of the vector multiplication formula where we can easily find out the angle between the vectors with the help of the magnitude of the vectors.
Complete answer:
The resultant vector formed when a vector quantity is multiplied by a scalar quantity is the scalar quantity multiplied by the magnitude of the vector. However, the direction is the same. And in the question, the vectors have the magnitude of \[2a\] and $4a$ and so the vectors are $2\overrightarrow{a}$ and $4\overrightarrow{a}$. Hence, the direction of both the vectors is $\overrightarrow{a}$ and so they are collinear as they have the same direction and different magnitude. So, the answer to the first part of the question is zero as the vectors are collinear.
When we look at the second part of the question, the magnitude of two vectors are $3a$ and $-5a$ and so using the scalar multiplication of vectors, the two vectors are $3\overrightarrow{a}$ and $-5\overrightarrow{a}$. So, one vector is antiparallel to the other as one of the vectors has a positive direction and the other has a negative direction, so when the vectors are completely opposite in direction, the angle between the vectors is $180{}^\circ $.
Note:In many places, the answer to this question is given with the help of the vector multiplication formula where we can easily find out the angle between the vectors with the help of the magnitude of the vectors.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE