Answer
Verified
467.7k+ views
Hint: Using the formula for magnetic field find the magnetic field at position r. Then, find the magnetic field at $\theta$. But, $ \theta =90+\lambda$ , so substitute this value in the equation for magnetic field for r as well as $\theta$. Now, take the ratio of these obtained magnetic fields and get the relation between angle of dip $\theta$ and latitude $\lambda$.
Formula used:
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$
Complete answer:
Consider the situation for dipoles at positions, r and $\theta$
The magnetic field at position r is given by,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$ …(1)
The magnetic field at $\theta$ is given by,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$ …(2)
But, $ \theta =90+\lambda$ …(3)
Thus, substituting the equation. (3) in equation. (2) we get,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { 90+ \lambda } }{ { r }^{ 3 } }$
$\Rightarrow { B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin {\lambda} }{ { r }^{ 3 } }$ …(4)
Similarly. Equation. (2) becomes,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { 90+ \lambda } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\cos {\lambda} }{ { r }^{ 3 } }$ …(5)
Dividing equation.(4) by (5) we get,
$\dfrac { { B }_{ r } }{ { B }_{ \theta } } =-2\tan { \lambda }$
Or we can also write it as,
$\tan { \delta =\tan { \lambda } }$
Hence, the correct answer is option D i.e. $\tan { \delta =\tan { \lambda } }.$
Note:
Here, the angle of dip means the angle of magnetic dip. Magnetic dip is defined as an angle which is made between the Earth’s magnetic field lines and horizontal plane. This angle is not constant. It depends on the point that is taken into consideration. And by latitude, we mean magnetic latitude. It is different from geographic latitude. It is defined with respect to the magnetic dipoles.
Formula used:
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$
Complete answer:
Consider the situation for dipoles at positions, r and $\theta$
The magnetic field at position r is given by,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$ …(1)
The magnetic field at $\theta$ is given by,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$ …(2)
But, $ \theta =90+\lambda$ …(3)
Thus, substituting the equation. (3) in equation. (2) we get,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { 90+ \lambda } }{ { r }^{ 3 } }$
$\Rightarrow { B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin {\lambda} }{ { r }^{ 3 } }$ …(4)
Similarly. Equation. (2) becomes,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { 90+ \lambda } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\cos {\lambda} }{ { r }^{ 3 } }$ …(5)
Dividing equation.(4) by (5) we get,
$\dfrac { { B }_{ r } }{ { B }_{ \theta } } =-2\tan { \lambda }$
Or we can also write it as,
$\tan { \delta =\tan { \lambda } }$
Hence, the correct answer is option D i.e. $\tan { \delta =\tan { \lambda } }.$
Note:
Here, the angle of dip means the angle of magnetic dip. Magnetic dip is defined as an angle which is made between the Earth’s magnetic field lines and horizontal plane. This angle is not constant. It depends on the point that is taken into consideration. And by latitude, we mean magnetic latitude. It is different from geographic latitude. It is defined with respect to the magnetic dipoles.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE
How many sp2 and sp hybridized carbon atoms are present class 12 chemistry CBSE
4bromo2pentene has a chiral carbon and can show enantiomerism class 12 chemistry CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE