Angle of dip $\delta$ and latitude $\lambda$, on earth’s surface are related as
A.$\tan { \delta =2\tan { \lambda } }$
B.$\tan { \delta =\cot { \lambda } }$
C.$\tan { \delta =\dfrac { \tan { \lambda } }{ 2 } }$
D.$\tan { \delta =\tan { \lambda } }$
Answer
Verified
476.7k+ views
Hint: Using the formula for magnetic field find the magnetic field at position r. Then, find the magnetic field at $\theta$. But, $ \theta =90+\lambda$ , so substitute this value in the equation for magnetic field for r as well as $\theta$. Now, take the ratio of these obtained magnetic fields and get the relation between angle of dip $\theta$ and latitude $\lambda$.
Formula used:
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$
Complete answer:
Consider the situation for dipoles at positions, r and $\theta$
The magnetic field at position r is given by,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$ …(1)
The magnetic field at $\theta$ is given by,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$ …(2)
But, $ \theta =90+\lambda$ …(3)
Thus, substituting the equation. (3) in equation. (2) we get,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { 90+ \lambda } }{ { r }^{ 3 } }$
$\Rightarrow { B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin {\lambda} }{ { r }^{ 3 } }$ …(4)
Similarly. Equation. (2) becomes,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { 90+ \lambda } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\cos {\lambda} }{ { r }^{ 3 } }$ …(5)
Dividing equation.(4) by (5) we get,
$\dfrac { { B }_{ r } }{ { B }_{ \theta } } =-2\tan { \lambda }$
Or we can also write it as,
$\tan { \delta =\tan { \lambda } }$
Hence, the correct answer is option D i.e. $\tan { \delta =\tan { \lambda } }.$
Note:
Here, the angle of dip means the angle of magnetic dip. Magnetic dip is defined as an angle which is made between the Earth’s magnetic field lines and horizontal plane. This angle is not constant. It depends on the point that is taken into consideration. And by latitude, we mean magnetic latitude. It is different from geographic latitude. It is defined with respect to the magnetic dipoles.
Formula used:
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$
Complete answer:
Consider the situation for dipoles at positions, r and $\theta$
The magnetic field at position r is given by,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }$ …(1)
The magnetic field at $\theta$ is given by,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }$ …(2)
But, $ \theta =90+\lambda$ …(3)
Thus, substituting the equation. (3) in equation. (2) we get,
${ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { 90+ \lambda } }{ { r }^{ 3 } }$
$\Rightarrow { B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin {\lambda} }{ { r }^{ 3 } }$ …(4)
Similarly. Equation. (2) becomes,
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { 90+ \lambda } }{ { r }^{ 3 } }$
${ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\cos {\lambda} }{ { r }^{ 3 } }$ …(5)
Dividing equation.(4) by (5) we get,
$\dfrac { { B }_{ r } }{ { B }_{ \theta } } =-2\tan { \lambda }$
Or we can also write it as,
$\tan { \delta =\tan { \lambda } }$
Hence, the correct answer is option D i.e. $\tan { \delta =\tan { \lambda } }.$
Note:
Here, the angle of dip means the angle of magnetic dip. Magnetic dip is defined as an angle which is made between the Earth’s magnetic field lines and horizontal plane. This angle is not constant. It depends on the point that is taken into consideration. And by latitude, we mean magnetic latitude. It is different from geographic latitude. It is defined with respect to the magnetic dipoles.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE