Angle of minimum deviation of a prism of a refractive index 1.5 is equal to the angle of the prism of prism. Then the angle of the prism is:
A. ${41^{^ \circ }}24'$
B. ${80^ \circ }$
C. ${60^ \circ }$
D. ${82^ \circ }48'$
Answer
Verified
123k+ views
Hint In the question, the angle of minimum deviation of a prism of a refractive index is given. By using the trigonometric equations in the refractive index as per the given conditions and simplifying the equation, then we get the value of the angle of the prism.
Complete step by step solution
A prism is a wedge-shaped body made from a refracting medium bounded by two plane faces inclined to each other at some angle. The two plane faces are called the refracting faces and the angle included between these faces is called the angle of the prism or the angle of the refraction.
Let ${\delta _m}$ be the angle of minimum deviation of the prism.
$A = {\delta _m}$
$\mu = \dfrac{{\sin \dfrac{{\left( {A + {\delta _m}} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the parameter of ${\delta _m}$in the above equation, we get
$\mu = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the known values in the above equation, we get
$1.5 = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = \dfrac{{\sin \,2\left( {\dfrac{A}{2}} \right)}}{{\sin \,\left( {\dfrac{A}{2}} \right)}}$
Performing the algebraic operation in the above equation, we get
$1.5 = \dfrac{{2\operatorname{Sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = 2\cos \,\dfrac{A}{2}$
Performing the arithmetic operation in the above equation, we get
$0.75 = \cos \dfrac{A}{2}$
Convert the equation in terms of A, we get
$\dfrac{A}{2} = {\cos ^{ - 1}}\left( {0.75} \right)$
Substitute the algebraic parameters in terms of the equation, we get
$A = 41 \times 2$
$A = {82^ \circ }.$
Therefore, the angle of the prism is ${82^ \circ }.$
Hence from the above options, option D is correct.
Note In the question, a refractive index is given. If here the angle of the prism is given. By substitute those values in the expression of the angle of the deviation of the prism. We get the value of the angle of the prism.
Complete step by step solution
A prism is a wedge-shaped body made from a refracting medium bounded by two plane faces inclined to each other at some angle. The two plane faces are called the refracting faces and the angle included between these faces is called the angle of the prism or the angle of the refraction.
Let ${\delta _m}$ be the angle of minimum deviation of the prism.
$A = {\delta _m}$
$\mu = \dfrac{{\sin \dfrac{{\left( {A + {\delta _m}} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the parameter of ${\delta _m}$in the above equation, we get
$\mu = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the known values in the above equation, we get
$1.5 = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = \dfrac{{\sin \,2\left( {\dfrac{A}{2}} \right)}}{{\sin \,\left( {\dfrac{A}{2}} \right)}}$
Performing the algebraic operation in the above equation, we get
$1.5 = \dfrac{{2\operatorname{Sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = 2\cos \,\dfrac{A}{2}$
Performing the arithmetic operation in the above equation, we get
$0.75 = \cos \dfrac{A}{2}$
Convert the equation in terms of A, we get
$\dfrac{A}{2} = {\cos ^{ - 1}}\left( {0.75} \right)$
Substitute the algebraic parameters in terms of the equation, we get
$A = 41 \times 2$
$A = {82^ \circ }.$
Therefore, the angle of the prism is ${82^ \circ }.$
Hence from the above options, option D is correct.
Note In the question, a refractive index is given. If here the angle of the prism is given. By substitute those values in the expression of the angle of the deviation of the prism. We get the value of the angle of the prism.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main