
Angle of minimum deviation of a prism of a refractive index 1.5 is equal to the angle of the prism of prism. Then the angle of the prism is:
A. ${41^{^ \circ }}24'$
B. ${80^ \circ }$
C. ${60^ \circ }$
D. ${82^ \circ }48'$
Answer
147.6k+ views
Hint In the question, the angle of minimum deviation of a prism of a refractive index is given. By using the trigonometric equations in the refractive index as per the given conditions and simplifying the equation, then we get the value of the angle of the prism.
Complete step by step solution
A prism is a wedge-shaped body made from a refracting medium bounded by two plane faces inclined to each other at some angle. The two plane faces are called the refracting faces and the angle included between these faces is called the angle of the prism or the angle of the refraction.
Let ${\delta _m}$ be the angle of minimum deviation of the prism.
$A = {\delta _m}$
$\mu = \dfrac{{\sin \dfrac{{\left( {A + {\delta _m}} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the parameter of ${\delta _m}$in the above equation, we get
$\mu = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the known values in the above equation, we get
$1.5 = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = \dfrac{{\sin \,2\left( {\dfrac{A}{2}} \right)}}{{\sin \,\left( {\dfrac{A}{2}} \right)}}$
Performing the algebraic operation in the above equation, we get
$1.5 = \dfrac{{2\operatorname{Sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = 2\cos \,\dfrac{A}{2}$
Performing the arithmetic operation in the above equation, we get
$0.75 = \cos \dfrac{A}{2}$
Convert the equation in terms of A, we get
$\dfrac{A}{2} = {\cos ^{ - 1}}\left( {0.75} \right)$
Substitute the algebraic parameters in terms of the equation, we get
$A = 41 \times 2$
$A = {82^ \circ }.$
Therefore, the angle of the prism is ${82^ \circ }.$
Hence from the above options, option D is correct.
Note In the question, a refractive index is given. If here the angle of the prism is given. By substitute those values in the expression of the angle of the deviation of the prism. We get the value of the angle of the prism.
Complete step by step solution
A prism is a wedge-shaped body made from a refracting medium bounded by two plane faces inclined to each other at some angle. The two plane faces are called the refracting faces and the angle included between these faces is called the angle of the prism or the angle of the refraction.
Let ${\delta _m}$ be the angle of minimum deviation of the prism.
$A = {\delta _m}$
$\mu = \dfrac{{\sin \dfrac{{\left( {A + {\delta _m}} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the parameter of ${\delta _m}$in the above equation, we get
$\mu = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the known values in the above equation, we get
$1.5 = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = \dfrac{{\sin \,2\left( {\dfrac{A}{2}} \right)}}{{\sin \,\left( {\dfrac{A}{2}} \right)}}$
Performing the algebraic operation in the above equation, we get
$1.5 = \dfrac{{2\operatorname{Sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = 2\cos \,\dfrac{A}{2}$
Performing the arithmetic operation in the above equation, we get
$0.75 = \cos \dfrac{A}{2}$
Convert the equation in terms of A, we get
$\dfrac{A}{2} = {\cos ^{ - 1}}\left( {0.75} \right)$
Substitute the algebraic parameters in terms of the equation, we get
$A = 41 \times 2$
$A = {82^ \circ }.$
Therefore, the angle of the prism is ${82^ \circ }.$
Hence from the above options, option D is correct.
Note In the question, a refractive index is given. If here the angle of the prism is given. By substitute those values in the expression of the angle of the deviation of the prism. We get the value of the angle of the prism.
Recently Updated Pages
JEE Main 2023 (January 29th Shift 1) Physics Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2022 (June 24th Shift 1) Physics Question Paper with Answer Key

Equivalent Capacitance - Important Concepts and Tips for JEE

JEE Main 2023 (April 6th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE
