Answer
Verified
429.3k+ views
Hint: We know that the right-angled triangle has one of the angles to be equal to $90^\circ $, here we are also given the two sides of the triangle and here third side of the triangle can be calculated by using the Pythagorean theorem or by using the laws of Sines.
Complete step-by-step solution:
First of all draw the right angled triangle and entitle it with A, B and C.
By using the Pythagoras theorem which states that in any right angled triangle the square of the hypotenuse is the sum of the square of the adjacent side and the square of the opposite side.
$A{C^2} = A{B^2} + B{C^2}$ . Hence, if we know measures of any two sides of the triangle then we can find out the measure of the third side by using the above equation.
Note: We can find the measure of the third side by using the Law of Sines.
i) First of all set up the triangle and mark the angles and the sides of the triangle.
The side opposite the angle is matched with the angle. Label “a” to the side opposite to angle A, similarly the side across from angle B as b and the side opposite to the angle C as “c” as shown below.
ii) The equation to find out the third unknown side.
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
iii) Calculate the unknown angle and then find the required unknown length.
Complete step-by-step solution:
First of all draw the right angled triangle and entitle it with A, B and C.
By using the Pythagoras theorem which states that in any right angled triangle the square of the hypotenuse is the sum of the square of the adjacent side and the square of the opposite side.
$A{C^2} = A{B^2} + B{C^2}$ . Hence, if we know measures of any two sides of the triangle then we can find out the measure of the third side by using the above equation.
Note: We can find the measure of the third side by using the Law of Sines.
i) First of all set up the triangle and mark the angles and the sides of the triangle.
The side opposite the angle is matched with the angle. Label “a” to the side opposite to angle A, similarly the side across from angle B as b and the side opposite to the angle C as “c” as shown below.
ii) The equation to find out the third unknown side.
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
iii) Calculate the unknown angle and then find the required unknown length.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers