Answer
Verified
395.4k+ views
Hint: A function $ f(x) $ is said to be differentiable, if the derivative of the function exists at every point in its given domain. Geometrically the derivative of a function $ f(x) $ at a point $ x = {x_0} $ is defined as the slope of the graph of $ f(x) $ at $ x = {x_0} $ . Then the function is said to be non-differentiable if the derivative does not exist at any one point of its domain.
Complete step-by-step answer:
Some examples of non-differentiable functions are:
A function is non-differentiable when there is a cusp or a corner point in its graph. For example consider the function $ f(x) = |x| $ , it has a cusp at $ x = 0 $ hence it is not differentiable at $ x = 0 $ .
If the function is not continuous then it is not differentiable, i.e. when there is a gap or a jump in the graph of the function then it is not continuous hence not differentiable. For example consider the step function $ f(x) = \dfrac{x}{{|x|}} $ , here there is a jump discontinuity $ x = 0 $ .
If the function can be defined but its derivative is infinite at a point then it becomes non-differentiable. This happens when there is a vertical tangent line at that point. For example, consider $ f(x) = {x^{\dfrac{1}{3}}} $ , it has a vertical tangent line at $ x = 0 $ , therefore at $ x = 0 $ its derivative is infinite.
When the function is unbounded and goes to infinity at some point of its domain it becomes non-differentiable. For example consider $ f(x) = \dfrac{1}{x} $ which goes to infinity at $ x = 0 $ , hence non- differentiable
Note: If a function is differentiable then it is always continuous but the converse need not be true, i.e. there are functions which are continuous but not differentiable for example $ f(x) = |x| $ is continuous at $ x = 0 $ but not differentiable at $ x = 0 $ . By studying the graph of the given function we can easily conclude about the continuity and differentiability of the function.
Complete step-by-step answer:
Some examples of non-differentiable functions are:
A function is non-differentiable when there is a cusp or a corner point in its graph. For example consider the function $ f(x) = |x| $ , it has a cusp at $ x = 0 $ hence it is not differentiable at $ x = 0 $ .
If the function is not continuous then it is not differentiable, i.e. when there is a gap or a jump in the graph of the function then it is not continuous hence not differentiable. For example consider the step function $ f(x) = \dfrac{x}{{|x|}} $ , here there is a jump discontinuity $ x = 0 $ .
If the function can be defined but its derivative is infinite at a point then it becomes non-differentiable. This happens when there is a vertical tangent line at that point. For example, consider $ f(x) = {x^{\dfrac{1}{3}}} $ , it has a vertical tangent line at $ x = 0 $ , therefore at $ x = 0 $ its derivative is infinite.
When the function is unbounded and goes to infinity at some point of its domain it becomes non-differentiable. For example consider $ f(x) = \dfrac{1}{x} $ which goes to infinity at $ x = 0 $ , hence non- differentiable
Note: If a function is differentiable then it is always continuous but the converse need not be true, i.e. there are functions which are continuous but not differentiable for example $ f(x) = |x| $ is continuous at $ x = 0 $ but not differentiable at $ x = 0 $ . By studying the graph of the given function we can easily conclude about the continuity and differentiability of the function.
Recently Updated Pages
What is the number of atoms in an end centered unit class 12 chemistry CBSE
What is the number of all possible matrices of ord-class-12-maths-CBSE
Nucleoprotein gave most probably the first sign of class 12 biology CBSE
Nucleic acid are polymers of ANucleotides BNucleosides class 12 chemistry CBSE
npropyl alcohol and isopropyl alcohol can be chemically class 12 chemistry CBSE
No matter how far you stand from a mirror your image class 12 physics CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Differentiate between insitu conservation and exsitu class 12 biology CBSE