Answer
Verified
468.6k+ views
Hint: Here first we have to find the scalar triple product of three vectors formed by the given four points and then check that value using the condition of coplanar.
We know that condition of coplanar is that “3 vectors are coplanar, if their scalar triple product is zero”
Complete step-by-step answer:
Here, we have the given points as
\[A\left( {1, - 1,1} \right)\], \[B\left( { - 1,1,1} \right)\], \[C\left( {1,1,1} \right)\] and \[D\left( {2, - 3,4} \right)\]
Now, we consider in position vector of points
The position vectors of the point \[A,B,C,D\] are
\[\overline a = \widehat i - \widehat j + \widehat k\]
\[\overline b = - \widehat i + \widehat j + \widehat k\]
\[\overline c = \widehat i + \widehat j + \widehat k\]
\[\overline d = 2\widehat i - 3\widehat j + 4\widehat k\]
Now we are going to find \[\overline {AB} \], \[\overline {AC} \] and \[\overline {AD} \] using the given four points,
We know that \[\overline {AB} \] is found by subtracting \[\overline a \] from \[\overline b \], that is,
\[\overline {AB} = \overline b - \overline a \]
\[\overline {AB} = \left( { - \widehat i + \widehat j + \widehat k} \right) - \left( {\widehat i - \widehat j + \widehat k} \right) = - 2\widehat i + 2\widehat j\]
Using the similar conditions we will find the values of \[\overline {AD}\] $and$ \[\overline {AC} \]
\[\overline {AC} = \overline c - \overline a \]
\[\overline {AC} = \left( {\widehat i + \widehat j + \widehat k} \right) - \left( {\widehat i - \widehat j + \widehat k} \right) = 2\widehat j\]
\[\overline {AD} = \overline d - \overline a \]
\[\overline {AD} = \left( {2\widehat i - 3\widehat j + 4\widehat k} \right) - \left( {\widehat i - \widehat j + \widehat k} \right) = \widehat i - 2\widehat j + 3\widehat k\]
Now we have found three vectors using the given four points, our next process is to find the scalar triple product of the three vectors.
Scalar triple product is found by finding the determinant of three vectors,
Hence the scalar triple product of three vectors is \[\left| {\begin{array}{*{20}{c}}{ - 2}&2&0\\0&2&0\\1&{ - 2}&3\end{array}} \right|\]
Now let us solve the determinant to find the final answer,
\[ = - 2\left[ {\left( {2 \times 3} \right) - \left( {0 \times - 2} \right)} \right] - 2\left[ {\left( {0 \times 3} \right) - \left( {0 \times 1} \right)} \right] + 0\left[ {\left( {0 \times - 2} \right) - \left( {2 \times 1} \right)} \right]\]
The scalar triple product of given vector is \[ = - 12\]
We know that 3 vectors are coplanar, if their scalar triple product is zero.
But here the scalar triple product \[ \ne 0\]
So the condition of coplanarity fails.
Hence, we can say that the given points are not coplanar to each other.
Additional Information: Coplanar vectors are the vectors which lie on the same plane, in a three-dimensional space. These are vectors which are parallel to the same plane. We can always find in a plane any two random vectors, which are coplanar.
Note: Here while finding the determinant value we take first row and solve the problem we can also solve it by taking any other rows and columns. But the answer of the determinant never changes.
We know that condition of coplanar is that “3 vectors are coplanar, if their scalar triple product is zero”
Complete step-by-step answer:
Here, we have the given points as
\[A\left( {1, - 1,1} \right)\], \[B\left( { - 1,1,1} \right)\], \[C\left( {1,1,1} \right)\] and \[D\left( {2, - 3,4} \right)\]
Now, we consider in position vector of points
The position vectors of the point \[A,B,C,D\] are
\[\overline a = \widehat i - \widehat j + \widehat k\]
\[\overline b = - \widehat i + \widehat j + \widehat k\]
\[\overline c = \widehat i + \widehat j + \widehat k\]
\[\overline d = 2\widehat i - 3\widehat j + 4\widehat k\]
Now we are going to find \[\overline {AB} \], \[\overline {AC} \] and \[\overline {AD} \] using the given four points,
We know that \[\overline {AB} \] is found by subtracting \[\overline a \] from \[\overline b \], that is,
\[\overline {AB} = \overline b - \overline a \]
\[\overline {AB} = \left( { - \widehat i + \widehat j + \widehat k} \right) - \left( {\widehat i - \widehat j + \widehat k} \right) = - 2\widehat i + 2\widehat j\]
Using the similar conditions we will find the values of \[\overline {AD}\] $and$ \[\overline {AC} \]
\[\overline {AC} = \overline c - \overline a \]
\[\overline {AC} = \left( {\widehat i + \widehat j + \widehat k} \right) - \left( {\widehat i - \widehat j + \widehat k} \right) = 2\widehat j\]
\[\overline {AD} = \overline d - \overline a \]
\[\overline {AD} = \left( {2\widehat i - 3\widehat j + 4\widehat k} \right) - \left( {\widehat i - \widehat j + \widehat k} \right) = \widehat i - 2\widehat j + 3\widehat k\]
Now we have found three vectors using the given four points, our next process is to find the scalar triple product of the three vectors.
Scalar triple product is found by finding the determinant of three vectors,
Hence the scalar triple product of three vectors is \[\left| {\begin{array}{*{20}{c}}{ - 2}&2&0\\0&2&0\\1&{ - 2}&3\end{array}} \right|\]
Now let us solve the determinant to find the final answer,
\[ = - 2\left[ {\left( {2 \times 3} \right) - \left( {0 \times - 2} \right)} \right] - 2\left[ {\left( {0 \times 3} \right) - \left( {0 \times 1} \right)} \right] + 0\left[ {\left( {0 \times - 2} \right) - \left( {2 \times 1} \right)} \right]\]
The scalar triple product of given vector is \[ = - 12\]
We know that 3 vectors are coplanar, if their scalar triple product is zero.
But here the scalar triple product \[ \ne 0\]
So the condition of coplanarity fails.
Hence, we can say that the given points are not coplanar to each other.
Additional Information: Coplanar vectors are the vectors which lie on the same plane, in a three-dimensional space. These are vectors which are parallel to the same plane. We can always find in a plane any two random vectors, which are coplanar.
Note: Here while finding the determinant value we take first row and solve the problem we can also solve it by taking any other rows and columns. But the answer of the determinant never changes.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE