Answer
Verified
486.9k+ views
Hint- Here, we will proceed by finding the number of valence electrons in the central atom, number of surrounding monovalent atoms, cationic charge and anionic charge for both the molecules given in the problem.
Complete answer:
Formula Used- H = $\dfrac{1}{2}$(V+M−C+A).
As we know that the number of orbitals involved in hybridization for any molecule is given by
H = $\dfrac{1}{2}$(V+M−C+A)
where H denotes the number of orbitals involved in hybridization, V denotes the number of valence electrons in the central atom, M denotes the number of surrounding monovalent atoms, C denotes the cationic charge and A denotes the anionic charge.
In this formula, only magnitudes of the cationic and anionic charges will be considered (the signs will be neglected).
If the value of H comes out to be 2 then the molecule is sp hybridised, 3 then it is ${\text{s}}{{\text{p}}^2}$ hybridised, 4 then it is ${\text{s}}{{\text{p}}^3}$ hybridized, 5 then it is ${\text{s}}{{\text{p}}^3}{\text{d}}$ hybridized, 6 then it is ${\text{s}}{{\text{p}}^3}{{\text{d}}^2}$ hybridised and so on.
For molecule ${\text{ICl}}_2^ - $,
Here, the central atom is iodine (I) which has 7 valence electrons and this I atom is linked to 2 atoms of Cl (monovalent atom). The anionic charge on the molecule is clearly -1.
Here, V = 7, M = 2, C = 0 and A = 1
H = $\dfrac{1}{2}$(V+M−C+A) = $\dfrac{1}{2}$(7+2−0+1) = $\dfrac{1}{2}$(10) = 5
Therefore, the hybridization of ${\text{ICl}}_2^ - $ is ${\text{s}}{{\text{p}}^3}{\text{d}}$.
For molecule ${\text{ClO}}_4^ - $,
Here, the central atom is chlorine (Cl) which has 7 valence electrons and this Cl atom is linked to 4 atoms of O (divalent atom). The anionic charge on the molecule is clearly -1.
Here, V = 7, M = 0, C = 0 and A = 1
H = $\dfrac{1}{2}$(V+M−C+A) = $\dfrac{1}{2}$(7+0−0+1) = $\dfrac{1}{2}$(8) = 4
Therefore, the hybridization of ${\text{ClO}}_4^ - $ is ${\text{s}}{{\text{p}}^3}$.
Hence, option C is correct.
Note -Orbital hybridization in chemistry is the concept of mixing atomic orbitals into new hybrid orbitals, suitable for pairing electrons to form chemical bonds in the theory of valence bonds. Atoms that only have one electron in the outermost shell, or those that require one electron to reach inert gas configuration, are considered monovalent atoms.
Complete answer:
Formula Used- H = $\dfrac{1}{2}$(V+M−C+A).
As we know that the number of orbitals involved in hybridization for any molecule is given by
H = $\dfrac{1}{2}$(V+M−C+A)
where H denotes the number of orbitals involved in hybridization, V denotes the number of valence electrons in the central atom, M denotes the number of surrounding monovalent atoms, C denotes the cationic charge and A denotes the anionic charge.
In this formula, only magnitudes of the cationic and anionic charges will be considered (the signs will be neglected).
If the value of H comes out to be 2 then the molecule is sp hybridised, 3 then it is ${\text{s}}{{\text{p}}^2}$ hybridised, 4 then it is ${\text{s}}{{\text{p}}^3}$ hybridized, 5 then it is ${\text{s}}{{\text{p}}^3}{\text{d}}$ hybridized, 6 then it is ${\text{s}}{{\text{p}}^3}{{\text{d}}^2}$ hybridised and so on.
For molecule ${\text{ICl}}_2^ - $,
Here, the central atom is iodine (I) which has 7 valence electrons and this I atom is linked to 2 atoms of Cl (monovalent atom). The anionic charge on the molecule is clearly -1.
Here, V = 7, M = 2, C = 0 and A = 1
H = $\dfrac{1}{2}$(V+M−C+A) = $\dfrac{1}{2}$(7+2−0+1) = $\dfrac{1}{2}$(10) = 5
Therefore, the hybridization of ${\text{ICl}}_2^ - $ is ${\text{s}}{{\text{p}}^3}{\text{d}}$.
For molecule ${\text{ClO}}_4^ - $,
Here, the central atom is chlorine (Cl) which has 7 valence electrons and this Cl atom is linked to 4 atoms of O (divalent atom). The anionic charge on the molecule is clearly -1.
Here, V = 7, M = 0, C = 0 and A = 1
H = $\dfrac{1}{2}$(V+M−C+A) = $\dfrac{1}{2}$(7+0−0+1) = $\dfrac{1}{2}$(8) = 4
Therefore, the hybridization of ${\text{ClO}}_4^ - $ is ${\text{s}}{{\text{p}}^3}$.
Hence, option C is correct.
Note -Orbital hybridization in chemistry is the concept of mixing atomic orbitals into new hybrid orbitals, suitable for pairing electrons to form chemical bonds in the theory of valence bonds. Atoms that only have one electron in the outermost shell, or those that require one electron to reach inert gas configuration, are considered monovalent atoms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE