
What are the hybridizations of and respectively?
None of these
Answer
515.1k+ views
Hint- Here, we will proceed by finding the number of valence electrons in the central atom, number of surrounding monovalent atoms, cationic charge and anionic charge for both the molecules given in the problem.
Complete answer:
Formula Used- H = (V+M−C+A).
As we know that the number of orbitals involved in hybridization for any molecule is given by
H = (V+M−C+A)
where H denotes the number of orbitals involved in hybridization, V denotes the number of valence electrons in the central atom, M denotes the number of surrounding monovalent atoms, C denotes the cationic charge and A denotes the anionic charge.
In this formula, only magnitudes of the cationic and anionic charges will be considered (the signs will be neglected).
If the value of H comes out to be 2 then the molecule is sp hybridised, 3 then it is hybridised, 4 then it is hybridized, 5 then it is hybridized, 6 then it is hybridised and so on.
For molecule ,
Here, the central atom is iodine (I) which has 7 valence electrons and this I atom is linked to 2 atoms of Cl (monovalent atom). The anionic charge on the molecule is clearly -1.
Here, V = 7, M = 2, C = 0 and A = 1
H = (V+M−C+A) = (7+2−0+1) = (10) = 5
Therefore, the hybridization of is .
For molecule ,
Here, the central atom is chlorine (Cl) which has 7 valence electrons and this Cl atom is linked to 4 atoms of O (divalent atom). The anionic charge on the molecule is clearly -1.
Here, V = 7, M = 0, C = 0 and A = 1
H = (V+M−C+A) = (7+0−0+1) = (8) = 4
Therefore, the hybridization of is .
Hence, option C is correct.
Note -Orbital hybridization in chemistry is the concept of mixing atomic orbitals into new hybrid orbitals, suitable for pairing electrons to form chemical bonds in the theory of valence bonds. Atoms that only have one electron in the outermost shell, or those that require one electron to reach inert gas configuration, are considered monovalent atoms.
Complete answer:
Formula Used- H =
As we know that the number of orbitals involved in hybridization for any molecule is given by
H =
where H denotes the number of orbitals involved in hybridization, V denotes the number of valence electrons in the central atom, M denotes the number of surrounding monovalent atoms, C denotes the cationic charge and A denotes the anionic charge.
In this formula, only magnitudes of the cationic and anionic charges will be considered (the signs will be neglected).
If the value of H comes out to be 2 then the molecule is sp hybridised, 3 then it is
For molecule
Here, the central atom is iodine (I) which has 7 valence electrons and this I atom is linked to 2 atoms of Cl (monovalent atom). The anionic charge on the molecule is clearly -1.
Here, V = 7, M = 2, C = 0 and A = 1
H =
Therefore, the hybridization of
For molecule
Here, the central atom is chlorine (Cl) which has 7 valence electrons and this Cl atom is linked to 4 atoms of O (divalent atom). The anionic charge on the molecule is clearly -1.
Here, V = 7, M = 0, C = 0 and A = 1
H =
Therefore, the hybridization of
Hence, option C is correct.
Note -Orbital hybridization in chemistry is the concept of mixing atomic orbitals into new hybrid orbitals, suitable for pairing electrons to form chemical bonds in the theory of valence bonds. Atoms that only have one electron in the outermost shell, or those that require one electron to reach inert gas configuration, are considered monovalent atoms.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
