Answer
Verified
395.1k+ views
Hint: At first, we divide the hexagon into six equilateral triangles. As we are given the height of one triangle, we can calculate the area of it using two formulae $h=\dfrac{\sqrt{3}}{2}a$ , and $Area=\dfrac{\sqrt{3}}{4}{{a}^{2}}$ . Hence by multiplying the area of one triangle by six, we can get the area of the entire hexagon.
Complete step by step answer:
The apothem is the distance between the centre of a polygon and the midpoint of one of its sides. In the given problem, the polygon is a hexagon (six sides). The hexagon has several properties associated with it. One of the properties is that if we join the centre to all the vertices then we get six equilateral triangles, all of the triangles having the same area.
The apothem of a hexagon is basically the height of the equilateral triangle. We have a predefined relation between the side and height of an equilateral triangle, which is
$h=\dfrac{\sqrt{3}}{2}a$ where “h” is the height and “a” is the side of the triangle.
Now putting the value of $h=9$ , we get the value of “a” as,
$\Rightarrow a=\dfrac{2}{\sqrt{3}}\left( 9 \right)=6\sqrt{3}$
As we know the area of an equilateral triangle is,
$Area=\dfrac{\sqrt{3}}{4}{{a}^{2}}$, hence putting the value of $a=6\sqrt{3}$ , we get the area as $27\sqrt{3}$ . Now we have a total of $6$ equilateral triangles. Hence the total area of the hexagon is $6\times 27\sqrt{3}=162\sqrt{3}$ .
Note: We should be aware of the less commonly used terms such as apothem. We should draw the diagrams carefully and carry out the various calculations attentively. At last, we should remember the number of triangles with the area of one triangle.
Complete step by step answer:
The apothem is the distance between the centre of a polygon and the midpoint of one of its sides. In the given problem, the polygon is a hexagon (six sides). The hexagon has several properties associated with it. One of the properties is that if we join the centre to all the vertices then we get six equilateral triangles, all of the triangles having the same area.
The apothem of a hexagon is basically the height of the equilateral triangle. We have a predefined relation between the side and height of an equilateral triangle, which is
$h=\dfrac{\sqrt{3}}{2}a$ where “h” is the height and “a” is the side of the triangle.
Now putting the value of $h=9$ , we get the value of “a” as,
$\Rightarrow a=\dfrac{2}{\sqrt{3}}\left( 9 \right)=6\sqrt{3}$
As we know the area of an equilateral triangle is,
$Area=\dfrac{\sqrt{3}}{4}{{a}^{2}}$, hence putting the value of $a=6\sqrt{3}$ , we get the area as $27\sqrt{3}$ . Now we have a total of $6$ equilateral triangles. Hence the total area of the hexagon is $6\times 27\sqrt{3}=162\sqrt{3}$ .
Note: We should be aware of the less commonly used terms such as apothem. We should draw the diagrams carefully and carry out the various calculations attentively. At last, we should remember the number of triangles with the area of one triangle.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is pollution? How many types of pollution? Define it
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE