Answer
Verified
498.6k+ views
Hint: In this question first find out the position vectors of the adjacent sides, later on apply the property of cross product, so, using these concepts we can reach the solution of the question.
Position vectors of the rectangle having vertices A, B, C, D are given as
$
\vec O\vec A = - \hat i + \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec B = \hat i + \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec C = \hat i - \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec D = - \hat i - \dfrac{1}{2}\hat j + 4\hat k \\
$
The adjacent sides of rectangle ABCD is given as (AB, BC)
So, the position vectors of these sides is given as
$\left( {\vec A\vec B} \right) = \left( {\vec O\vec B} \right) - \left( {\vec O\vec A} \right)$
Now substitute the above values in above equation we have,
$
\Rightarrow \left( {\vec A\vec B} \right) = \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( { - \hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\
\Rightarrow \left( {\vec A\vec B} \right) = \left( {1 + 1} \right)\hat i + \left( {\dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = 2\hat i \\
$
And, $\left( {\vec B\vec C} \right) = \left( {\vec O\vec C} \right) - \left( {\vec O\vec B} \right)$
Now substitute the above values in above equation we have,
$
\Rightarrow \left( {\vec B\vec C} \right) = \left( {\hat i - \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\
\Rightarrow \left( {\vec B\vec C} \right) = \left( {1 - 1} \right)\hat i + \left( { - \dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = - \hat j \\
$
Now we all know that the area of the rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is $\left| {\left( {\vec a \times \vec b} \right)} \right|$.
So the area of the rectangle having adjacent sides $\left( {\vec A\vec B} \right)$ and $\left( {\vec B\vec C} \right)$ is $\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right|$
Now first calculate cross product of these vectors we have
$\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right) = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\vec j}&{\vec k} \\
2&0&0 \\
0&{ - 1}&0
\end{array}} \right| = \left( {0 - 0} \right)\hat i - \left( {0 - 0} \right)\vec j + \left( { - 2 - 0} \right)\vec k = - 2\vec k$
Now the modulus of above cross product is
$\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right| = \left| { - 2\hat k} \right| = \sqrt {{{\left( { - 2} \right)}^2}} = 2$
So, the area of the rectangle is 2 sq. units.
Hence, option (c) is correct.
Note: In such types of questions the key concept we have to remember is that always recall that the area of rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is$\left| {\left( {\vec a \times \vec b} \right)} \right|$, so first calculate the adjacent sides of the rectangle as above then apply this concept, we will get the required area of the rectangle.
Position vectors of the rectangle having vertices A, B, C, D are given as
$
\vec O\vec A = - \hat i + \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec B = \hat i + \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec C = \hat i - \dfrac{1}{2}\hat j + 4\hat k \\
\vec O\vec D = - \hat i - \dfrac{1}{2}\hat j + 4\hat k \\
$
The adjacent sides of rectangle ABCD is given as (AB, BC)
So, the position vectors of these sides is given as
$\left( {\vec A\vec B} \right) = \left( {\vec O\vec B} \right) - \left( {\vec O\vec A} \right)$
Now substitute the above values in above equation we have,
$
\Rightarrow \left( {\vec A\vec B} \right) = \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( { - \hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\
\Rightarrow \left( {\vec A\vec B} \right) = \left( {1 + 1} \right)\hat i + \left( {\dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = 2\hat i \\
$
And, $\left( {\vec B\vec C} \right) = \left( {\vec O\vec C} \right) - \left( {\vec O\vec B} \right)$
Now substitute the above values in above equation we have,
$
\Rightarrow \left( {\vec B\vec C} \right) = \left( {\hat i - \dfrac{1}{2}\hat j + 4\hat k} \right) - \left( {\hat i + \dfrac{1}{2}\hat j + 4\hat k} \right) \\
\Rightarrow \left( {\vec B\vec C} \right) = \left( {1 - 1} \right)\hat i + \left( { - \dfrac{1}{2} - \dfrac{1}{2}} \right)\hat j + \left( {4 - 4} \right)\hat k = - \hat j \\
$
Now we all know that the area of the rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is $\left| {\left( {\vec a \times \vec b} \right)} \right|$.
So the area of the rectangle having adjacent sides $\left( {\vec A\vec B} \right)$ and $\left( {\vec B\vec C} \right)$ is $\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right|$
Now first calculate cross product of these vectors we have
$\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right) = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\vec j}&{\vec k} \\
2&0&0 \\
0&{ - 1}&0
\end{array}} \right| = \left( {0 - 0} \right)\hat i - \left( {0 - 0} \right)\vec j + \left( { - 2 - 0} \right)\vec k = - 2\vec k$
Now the modulus of above cross product is
$\left| {\left( {\left( {\vec A\vec B} \right) \times \left( {\vec B\vec C} \right)} \right)} \right| = \left| { - 2\hat k} \right| = \sqrt {{{\left( { - 2} \right)}^2}} = 2$
So, the area of the rectangle is 2 sq. units.
Hence, option (c) is correct.
Note: In such types of questions the key concept we have to remember is that always recall that the area of rectangle whose adjacent sides are $\vec a$ and $\vec b$ is the modulus of cross product of these vectors which is$\left| {\left( {\vec a \times \vec b} \right)} \right|$, so first calculate the adjacent sides of the rectangle as above then apply this concept, we will get the required area of the rectangle.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE