Answer
Verified
472.5k+ views
Hint: Electrolysis is a process in which the electric current is passed through a solution which consists of electrolytes such that the electrolytes with a positive charge move towards the negative electrode vice versa. Faraday's first law states that the mass of an element deposited at an electrode is directly proportional to the charge (Q).
Complete answer:
-The given assertion is true because according to the first law of Faraday, the mass deposited is directly proportional to the charge in coulomb i.e.
$\begin{align}
& \text{m }\alpha \text{ Q} \\
& \text{Z = }\dfrac{m}{Q} \\
\end{align}$
-Here, Z is the proportionality constant which is also known as Electro-chemical equivalent of the substance.
-Also, the given reason is correct because the molecular weight of both silver and copper are different i.e. 107 a.m.u. and 63 a.m.u. respectively.
-But the reason is not the correct explanation of the assertion because according to Faraday's first law, the quantity of electricity is different for the different mass of the atom but in the reason, the molecular weight of the atom is given.
-The reaction of the silver in the electrolysis process will be:
$\text{A}{{\text{g}}^{+}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag}$
- The reaction of the copper in the electrolysis process will be:
$\text{C}{{\text{u}}^{2+}}\text{ + 2}{{\text{e}}^{-}}\text{ }\to \text{ Cu}$
-Also, it is given in the question that one mole of silver and 2 moles of copper is taken. So, here the mass for silver will be 107g and for copper, the mass will be 126 by using the formula of no. of moles.
$\text{No}\text{. of moles = }\dfrac{\text{Mass}}{\text{Molar mass}}$
-For silver: $\text{1 = }\dfrac{\text{Mass}}{107}$ $ \text{ Mass = 107g}$
- For copper: $\text{2 = }\dfrac{\text{Mass}}{63}$ $ \text{ Mass = 126g}$
So, the correct answer is “Option B”.
Note: Faraday's second law states that the mass deposited or liberated (m) at the electrodes present in the solution is directly proportional to the equivalent weight € of the substance or atomic weight and inversely proportional to the valency i.e. $\text{m }\alpha \text{ E}$.
Complete answer:
-The given assertion is true because according to the first law of Faraday, the mass deposited is directly proportional to the charge in coulomb i.e.
$\begin{align}
& \text{m }\alpha \text{ Q} \\
& \text{Z = }\dfrac{m}{Q} \\
\end{align}$
-Here, Z is the proportionality constant which is also known as Electro-chemical equivalent of the substance.
-Also, the given reason is correct because the molecular weight of both silver and copper are different i.e. 107 a.m.u. and 63 a.m.u. respectively.
-But the reason is not the correct explanation of the assertion because according to Faraday's first law, the quantity of electricity is different for the different mass of the atom but in the reason, the molecular weight of the atom is given.
-The reaction of the silver in the electrolysis process will be:
$\text{A}{{\text{g}}^{+}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag}$
- The reaction of the copper in the electrolysis process will be:
$\text{C}{{\text{u}}^{2+}}\text{ + 2}{{\text{e}}^{-}}\text{ }\to \text{ Cu}$
-Also, it is given in the question that one mole of silver and 2 moles of copper is taken. So, here the mass for silver will be 107g and for copper, the mass will be 126 by using the formula of no. of moles.
$\text{No}\text{. of moles = }\dfrac{\text{Mass}}{\text{Molar mass}}$
-For silver: $\text{1 = }\dfrac{\text{Mass}}{107}$ $ \text{ Mass = 107g}$
- For copper: $\text{2 = }\dfrac{\text{Mass}}{63}$ $ \text{ Mass = 126g}$
So, the correct answer is “Option B”.
Note: Faraday's second law states that the mass deposited or liberated (m) at the electrodes present in the solution is directly proportional to the equivalent weight € of the substance or atomic weight and inversely proportional to the valency i.e. $\text{m }\alpha \text{ E}$.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE