Answer
Verified
99.9k+ views
Hint: First we have to know what an axial vector is. Axial vectors are those functions along the axis of rotation and show the rotational influence. Odd number of cross products gives axial vectors while even numbers give normal vectors. With the help of definition, we find out the correct option.
Complete step by step solution:
We know axial vector is a vector that does not change its sign on changing the coordinate system to a new system by a reflection in the origin. When the direction of the coordinate axes are inverted, the sign will remain the same as the cross product of two vectors. Hence the cross product of two vectors will be an axial vector.
Now let $\vec{v}$= instantaneous velocity , $\vec{r}$= radius vector and $\vec{w}$= angular velocity. Consider a circular disc rotating about its axis with angular velocity w. A particle at a distance r from axis, whose position vector is r, is moving at a speed
$v=\dfrac{2\pi r}{T}$
Where, T = period of rotation = time taken to go round once =$\dfrac{2\pi }{w}$
So v = $\dfrac{2\pi r }{\dfrac{2\pi }{w}}= w\,r$
That is the particle moving with speed = wr and its direction is tangential which is the same as $w\times r$ (vector product ). If origin of coordinate system is not at centre, but at some distance on the axis then,
$v=wr\sin \theta $
That is $\vec{v}=\vec{w}\times \vec{r}$
Thus, the assertion is correct but the reason is incorrect.
Hence, option C is correct.
Note: We should take care about the fact that an axial vector is present when the object is in circular motion, and we are not able to find the axial vector in linear motion.
Complete step by step solution:
We know axial vector is a vector that does not change its sign on changing the coordinate system to a new system by a reflection in the origin. When the direction of the coordinate axes are inverted, the sign will remain the same as the cross product of two vectors. Hence the cross product of two vectors will be an axial vector.
Now let $\vec{v}$= instantaneous velocity , $\vec{r}$= radius vector and $\vec{w}$= angular velocity. Consider a circular disc rotating about its axis with angular velocity w. A particle at a distance r from axis, whose position vector is r, is moving at a speed
$v=\dfrac{2\pi r}{T}$
Where, T = period of rotation = time taken to go round once =$\dfrac{2\pi }{w}$
So v = $\dfrac{2\pi r }{\dfrac{2\pi }{w}}= w\,r$
That is the particle moving with speed = wr and its direction is tangential which is the same as $w\times r$ (vector product ). If origin of coordinate system is not at centre, but at some distance on the axis then,
$v=wr\sin \theta $
That is $\vec{v}=\vec{w}\times \vec{r}$
Thus, the assertion is correct but the reason is incorrect.
Hence, option C is correct.
Note: We should take care about the fact that an axial vector is present when the object is in circular motion, and we are not able to find the axial vector in linear motion.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main