At $20^\circ C$ temperature in horizontal pipe pressure falls 60 KPa per 100 m and water flow in pipe with rate 3 litre per minute, what is approximate radius of pipe $($coefficient of viscosity, $20^\circ C = {10^{ - 3}}Pa)$
(A) $2.52 cm$
(B) $0.38 cm$
(C) $1.23 cm$
(D) $4.63 cm$
Answer
Verified
473.1k+ views
Hint:In given numerical rate of water flow, coefficient of viscosity length of pipe and pressure difference is given at fixed temperature. Using poiseuille’s law and on substituting the values of all these physical quantities we get a radius of pipe.
Formula used:
According to poiseuille’s law, the rate of flow of water is given as
$Q = \dfrac{{\Delta \rho \pi {r^4}}}{{8\eta \ell }}$
Where
$\Delta \rho = $ Pressure difference
r $ = $ Radius of pipe
$\eta = $ Coefficient of viscosity
$\ell = $ Length of pipe
Complete step by step answer:
Given that
Pressure difference $\Delta \rho = 60kPa$
$\Delta \rho = 60 \times {10^{ - 3}}Pa$
Coefficient of viscosity $\eta = {10^{ - 3}}$
Length of pipe $\ell = 100m$
Rate of water flow $Q = \dfrac{{3 \times {{10}^{ - 3}}}}{{60}}$
$Q = 5 \times {10^{ - 5}}{m^3}{s^{ - 1}}$
According to poiseuille’s law, the rate of flow of water is given by
$\Rightarrow Q = \dfrac{{\Delta \rho \pi {r^4}}}{{8\eta \ell }}$
$\Rightarrow {r^4} = \dfrac{{8Q\eta \ell }}{{\Delta \rho \pi }}$ $[\because \pi = 3.14]$
On putting all the values in above expression
$\Rightarrow {r^4} = \dfrac{{8 \times 5 \times {{10}^{ - 5}} \times {{10}^{ - 3}} \times 100}}{{60 \times {{10}^3} \times 3.14}}$
$\Rightarrow {r^4} = \dfrac{{40 \times 100 \times {{10}^{ - 8}}}}{{188.4 \times {{10}^3}}}$
$\Rightarrow {r^4} = \dfrac{{4000}}{{1884}} \times {10^{ - 8}} \times {10^{ - 2}}$
$\Rightarrow {r^4} = 2.12 \times {10^{ - 10}}$
$\Rightarrow {r^2} = \sqrt {2.12 \times {{10}^{ - 10}}} $
$\Rightarrow {r^2} = 1.457 \times {10^{ - 5}}$
$\Rightarrow r = \sqrt {1.457 \times {{10}^{ - 5}}} $
$\Rightarrow r = \sqrt {14.57 \times {{10}^{ - 6}}} $
$\Rightarrow r = 3.187 \times {10^{ - 3}}m$
$\Rightarrow r \approx 3.82 \times {10^{ - 3}}m$
$\Rightarrow r \approx 3.82 \times {10^{ - 1}}cm$
$\therefore r \approx 0.38cm$
Hence, the radius of pipe is $0.38 cm$. So, option B is the correct answer.
Note: Many times students may get confused between dynamic viscosity and kinematic viscosity.Dynamic viscosity is the measurement of the fluid’s internal resistance to flow.Kinematic viscosity if the ratio of dynamic viscosity to density.
Formula used:
According to poiseuille’s law, the rate of flow of water is given as
$Q = \dfrac{{\Delta \rho \pi {r^4}}}{{8\eta \ell }}$
Where
$\Delta \rho = $ Pressure difference
r $ = $ Radius of pipe
$\eta = $ Coefficient of viscosity
$\ell = $ Length of pipe
Complete step by step answer:
Given that
Pressure difference $\Delta \rho = 60kPa$
$\Delta \rho = 60 \times {10^{ - 3}}Pa$
Coefficient of viscosity $\eta = {10^{ - 3}}$
Length of pipe $\ell = 100m$
Rate of water flow $Q = \dfrac{{3 \times {{10}^{ - 3}}}}{{60}}$
$Q = 5 \times {10^{ - 5}}{m^3}{s^{ - 1}}$
According to poiseuille’s law, the rate of flow of water is given by
$\Rightarrow Q = \dfrac{{\Delta \rho \pi {r^4}}}{{8\eta \ell }}$
$\Rightarrow {r^4} = \dfrac{{8Q\eta \ell }}{{\Delta \rho \pi }}$ $[\because \pi = 3.14]$
On putting all the values in above expression
$\Rightarrow {r^4} = \dfrac{{8 \times 5 \times {{10}^{ - 5}} \times {{10}^{ - 3}} \times 100}}{{60 \times {{10}^3} \times 3.14}}$
$\Rightarrow {r^4} = \dfrac{{40 \times 100 \times {{10}^{ - 8}}}}{{188.4 \times {{10}^3}}}$
$\Rightarrow {r^4} = \dfrac{{4000}}{{1884}} \times {10^{ - 8}} \times {10^{ - 2}}$
$\Rightarrow {r^4} = 2.12 \times {10^{ - 10}}$
$\Rightarrow {r^2} = \sqrt {2.12 \times {{10}^{ - 10}}} $
$\Rightarrow {r^2} = 1.457 \times {10^{ - 5}}$
$\Rightarrow r = \sqrt {1.457 \times {{10}^{ - 5}}} $
$\Rightarrow r = \sqrt {14.57 \times {{10}^{ - 6}}} $
$\Rightarrow r = 3.187 \times {10^{ - 3}}m$
$\Rightarrow r \approx 3.82 \times {10^{ - 3}}m$
$\Rightarrow r \approx 3.82 \times {10^{ - 1}}cm$
$\therefore r \approx 0.38cm$
Hence, the radius of pipe is $0.38 cm$. So, option B is the correct answer.
Note: Many times students may get confused between dynamic viscosity and kinematic viscosity.Dynamic viscosity is the measurement of the fluid’s internal resistance to flow.Kinematic viscosity if the ratio of dynamic viscosity to density.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE