At 407 K the rate constant of a chemical reaction is $\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$ and at 420 K, the rate constant is$\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$ . Calculate the frequency factor of the reaction.
Answer
Verified
482.1k+ views
Hint: The equation called Arrhenius equation is usually written as $k=A{{e}^{-{{E}_{a}}/RT}}$ where the pre-exponential factor A is a constant and is called frequency factor and ${{E}_{a}}$ is called the activation energy, R is the gas constant and T is the temperature. The activation energy is calculated by the formula $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$ where ${{k}_{1}}\text{ and }{{k}_{2}}$ are rate constants at different temperatures.
Complete answer:
According to the question,
Rate constant of the first reaction is $\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$at 407 K.
So,
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
Rate constant of the second reaction is $\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$ at 420 K
So,
${{k}_{2}}=\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$
${{T}_{2}}=420K$
The value of gas constant is taken in the SI unit. The value of R = 8.314 $Jmo{{l}^{-1}}{{K}^{-1}}$
So, with all these factors we can calculate the value of activation energy.
The activation energy is calculated with the formula = $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$
So, putting all the values, we get
$\log \frac{1.9\text{ x 1}{{\text{0}}^{-4}}}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{{{E}_{a}}}{2.303\text{ x 8}\text{.314}}\left[ \dfrac{420-407}{420\text{ x 407}} \right]$
${{E}_{a}}=75782.3Jmo{{l}^{-1}}$
So, the value of activation energy is 757582.3 joule per mole
Since, we know the value of activation energy is calculated, now, the value of frequency factor can be calculated easily.
According to the Arrhenius equation,
$k=A{{e}^{-{{E}_{a}}/RT}}$
The logarithm form of this equation will be,
$\log k=\log A-\dfrac{{{E}_{a}}}{2.303RT}$
Since, we have two reactions, we can put the value of any reaction.
Let us take the first reaction:
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
So, putting all the values in the equation, we get
$\log 9.5\text{ x 1}{{\text{0}}^{-5}}=\log A-\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}$
$\log \dfrac{A}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}=9.7246$
A = antilog (9.7246)
$A=5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$
So, the value of frequency factor is $5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$ .
Note: To find the frequency factor it is not necessary to apply the equation on the first reaction, we can put the values of any reaction in the formula. The Arrhenius equation tells the effect of temperature on the rate of reaction.
Complete answer:
According to the question,
Rate constant of the first reaction is $\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$at 407 K.
So,
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
Rate constant of the second reaction is $\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$ at 420 K
So,
${{k}_{2}}=\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$
${{T}_{2}}=420K$
The value of gas constant is taken in the SI unit. The value of R = 8.314 $Jmo{{l}^{-1}}{{K}^{-1}}$
So, with all these factors we can calculate the value of activation energy.
The activation energy is calculated with the formula = $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$
So, putting all the values, we get
$\log \frac{1.9\text{ x 1}{{\text{0}}^{-4}}}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{{{E}_{a}}}{2.303\text{ x 8}\text{.314}}\left[ \dfrac{420-407}{420\text{ x 407}} \right]$
${{E}_{a}}=75782.3Jmo{{l}^{-1}}$
So, the value of activation energy is 757582.3 joule per mole
Since, we know the value of activation energy is calculated, now, the value of frequency factor can be calculated easily.
According to the Arrhenius equation,
$k=A{{e}^{-{{E}_{a}}/RT}}$
The logarithm form of this equation will be,
$\log k=\log A-\dfrac{{{E}_{a}}}{2.303RT}$
Since, we have two reactions, we can put the value of any reaction.
Let us take the first reaction:
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
So, putting all the values in the equation, we get
$\log 9.5\text{ x 1}{{\text{0}}^{-5}}=\log A-\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}$
$\log \dfrac{A}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}=9.7246$
A = antilog (9.7246)
$A=5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$
So, the value of frequency factor is $5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$ .
Note: To find the frequency factor it is not necessary to apply the equation on the first reaction, we can put the values of any reaction in the formula. The Arrhenius equation tells the effect of temperature on the rate of reaction.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE