Answer
Verified
459k+ views
Hint: The ideal binary solution is a mixture of two components. The vapour pressure on the solution can be expressed in terms of molar ratio. The relation between the pressure of the mixture and the partial pressure of components and molar ratio is expressed as follows;
$\text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{A}}}\text{ p}_{\text{A}}^{\text{0}}\text{ + }{{\text{X}}_{\text{B}}}\text{ p}_{\text{B}}^{\text{0}}\text{ }$
Where ${{x}_{A}}$ is the mole fraction of component A and ${{x}_{B}}$ is the mole fraction of B.
Complete step by step answer:
According to Raoult's law, the partial pressure of any volatile component of a solution at any temperature is equal to the vapour pressure of the pure component multiplied by the mole fraction of that component in the solution.
For a binary solution let’s make of the $\text{ }{{\text{n}}_{\text{A}}}\text{ }$moles of volatile liquid A and $\text{ }{{\text{n}}_{\text{B}}}\text{ }$moles of a volatile liquid B. If $\text{ }{{P}_{A}}\text{ }$and $\text{ }{{P}_{B}}\text{ }$are the partial pressure of the two liquid components, then, according to the Raoult’s law,
$\text{ }{{P}_{A}}\text{ = }{{x}_{A}}\text{ }p_{A}^{0}\text{ }$ And $\text{ }{{P}_{B}}\text{ = }{{x}_{B}}\text{ }p_{B}^{0}\text{ }$
Where ${{x}_{A}}$ is the mole fraction of component A and ${{x}_{B}}$ is the mole fraction of B.
For the binary mixture of A and B the, according to Dalton’s law of partial pressure, the total vapour pressure P is given as,
$\text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{A}}}\text{ p}_{\text{A}}^{\text{0}}\text{ + }{{\text{X}}_{\text{B}}}\text{ p}_{\text{B}}^{\text{0}}\text{ }$
Where ${{x}_{A}}$ is the mole fraction of component A and ${{x}_{B}}$ is the mole fraction of B.
We have given the following data:
Vapour pressure of xylene is,$\text{ p}_{\text{Xylene}}^{\text{0}}\text{ = 150 mm }$
Vapour pressure of toluene is, $\text{ p}_{\text{Toluene}}^{\text{0}}\text{ }=\text{400 mm }$
The total vapour pressure of the mixture is, $\text{ 0}\text{.5 atm }$
To find: the molar ratios of the xylene and toluene
Let’s first convert the pressure of the mixture from atmospheric pressure (atm). We have,
$\begin{align}
& \text{ P = 0}\text{.5 atm = }\frac{76}{2}\text{ mm of Hg } \\
& \therefore \text{ P = 380 mm of Hg } \\
\end{align}$
And we know that, the sum of the mole fraction of the components A and B is always equal to unity. Thus we have,
$\begin{align}
& \text{ }{{\text{X}}_{\text{Xylene}}}\text{ + }{{\text{X}}_{\text{Toluene}}}\text{ = 1} \\
& \therefore \text{ }{{\text{X}}_{\text{Xylene}}}\text{ = 1}-{{\text{X}}_{\text{Toluene}}}\text{ } \\
\end{align}$
Let's rewrite the equation of the pressure for the mixture of xylene and toluene. We have,
$\text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{Xylene}}}\text{ p}_{\text{Xylene}}^{\text{0}}\text{ + }{{\text{X}}_{\text{Toluene}}}\text{ p}_{\text{Toluene}}^{\text{0}}\text{ }$
Let’s substitute the values, we have,
$\begin{align}
& \text{ }{{\text{P}}_{\text{mixture}}}\text{ = p}_{\text{Xylene}}^{\text{0}}\text{(1}-{{\text{X}}_{\text{Toluene}}}\text{) + }{{\text{X}}_{\text{Toluene}}}\text{ p}_{\text{Toluene}}^{\text{0}} \\
& \Rightarrow \text{380 = 150 (1}-{{\text{X}}_{\text{Toluene}}}\text{) + 400 (}{{\text{X}}_{\text{Toluene}}}) \\
& \Rightarrow 380\text{ = 150 }-\text{150 }{{\text{X}}_{\text{Toluene}}}\text{ + 400 }{{\text{X}}_{\text{Toluene}}} \\
& \Rightarrow 230\text{ = 250}{{\text{X}}_{\text{Toluene}}} \\
& \therefore {{\text{X}}_{\text{Toluene}}}=\frac{230\text{ }}{\text{250}}\text{ = 0}\text{.92} \\
\end{align}$
Therefore, the mole fraction of xylene is as follows,
$\begin{align}
& {{\text{X}}_{\text{Xylene}}}\text{ = 1}-{{\text{X}}_{\text{Toluene}}} \\
& \therefore {{\text{X}}_{\text{Xylene}}}=1-\text{0}\text{.92 = 0}\text{.08} \\
\end{align}$
Thus, the mole fraction of toluene is equal to $\text{0}\text{.92}$ and the mole fraction of xylene is equal to$\text{0}\text{.08}$.
Note: The Raoult’s law is valid for the ideal or the dilute solutions. Applied to the non-ideal of the concentrated solution does not cause the change in the order of the magnitude of the calculated vapour pressure. Note that, when the solution contains i component then the pressure of the mixture is given as,
$\text{ }{{\text{p}}_{\text{i}}}\text{ = }{{\text{x}}_{\text{i}}}\text{ p}_{\text{i}}^{\text{0}}\text{ }$
The total vapour pressure may be expressed as,
$\text{P = }\sum{{{p}_{i}}}$
$\text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{A}}}\text{ p}_{\text{A}}^{\text{0}}\text{ + }{{\text{X}}_{\text{B}}}\text{ p}_{\text{B}}^{\text{0}}\text{ }$
Where ${{x}_{A}}$ is the mole fraction of component A and ${{x}_{B}}$ is the mole fraction of B.
Complete step by step answer:
According to Raoult's law, the partial pressure of any volatile component of a solution at any temperature is equal to the vapour pressure of the pure component multiplied by the mole fraction of that component in the solution.
For a binary solution let’s make of the $\text{ }{{\text{n}}_{\text{A}}}\text{ }$moles of volatile liquid A and $\text{ }{{\text{n}}_{\text{B}}}\text{ }$moles of a volatile liquid B. If $\text{ }{{P}_{A}}\text{ }$and $\text{ }{{P}_{B}}\text{ }$are the partial pressure of the two liquid components, then, according to the Raoult’s law,
$\text{ }{{P}_{A}}\text{ = }{{x}_{A}}\text{ }p_{A}^{0}\text{ }$ And $\text{ }{{P}_{B}}\text{ = }{{x}_{B}}\text{ }p_{B}^{0}\text{ }$
Where ${{x}_{A}}$ is the mole fraction of component A and ${{x}_{B}}$ is the mole fraction of B.
For the binary mixture of A and B the, according to Dalton’s law of partial pressure, the total vapour pressure P is given as,
$\text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{A}}}\text{ p}_{\text{A}}^{\text{0}}\text{ + }{{\text{X}}_{\text{B}}}\text{ p}_{\text{B}}^{\text{0}}\text{ }$
Where ${{x}_{A}}$ is the mole fraction of component A and ${{x}_{B}}$ is the mole fraction of B.
We have given the following data:
Vapour pressure of xylene is,$\text{ p}_{\text{Xylene}}^{\text{0}}\text{ = 150 mm }$
Vapour pressure of toluene is, $\text{ p}_{\text{Toluene}}^{\text{0}}\text{ }=\text{400 mm }$
The total vapour pressure of the mixture is, $\text{ 0}\text{.5 atm }$
To find: the molar ratios of the xylene and toluene
Let’s first convert the pressure of the mixture from atmospheric pressure (atm). We have,
$\begin{align}
& \text{ P = 0}\text{.5 atm = }\frac{76}{2}\text{ mm of Hg } \\
& \therefore \text{ P = 380 mm of Hg } \\
\end{align}$
And we know that, the sum of the mole fraction of the components A and B is always equal to unity. Thus we have,
$\begin{align}
& \text{ }{{\text{X}}_{\text{Xylene}}}\text{ + }{{\text{X}}_{\text{Toluene}}}\text{ = 1} \\
& \therefore \text{ }{{\text{X}}_{\text{Xylene}}}\text{ = 1}-{{\text{X}}_{\text{Toluene}}}\text{ } \\
\end{align}$
Let's rewrite the equation of the pressure for the mixture of xylene and toluene. We have,
$\text{ }{{\text{P}}_{\text{mixture}}}\text{ = }{{\text{X}}_{\text{Xylene}}}\text{ p}_{\text{Xylene}}^{\text{0}}\text{ + }{{\text{X}}_{\text{Toluene}}}\text{ p}_{\text{Toluene}}^{\text{0}}\text{ }$
Let’s substitute the values, we have,
$\begin{align}
& \text{ }{{\text{P}}_{\text{mixture}}}\text{ = p}_{\text{Xylene}}^{\text{0}}\text{(1}-{{\text{X}}_{\text{Toluene}}}\text{) + }{{\text{X}}_{\text{Toluene}}}\text{ p}_{\text{Toluene}}^{\text{0}} \\
& \Rightarrow \text{380 = 150 (1}-{{\text{X}}_{\text{Toluene}}}\text{) + 400 (}{{\text{X}}_{\text{Toluene}}}) \\
& \Rightarrow 380\text{ = 150 }-\text{150 }{{\text{X}}_{\text{Toluene}}}\text{ + 400 }{{\text{X}}_{\text{Toluene}}} \\
& \Rightarrow 230\text{ = 250}{{\text{X}}_{\text{Toluene}}} \\
& \therefore {{\text{X}}_{\text{Toluene}}}=\frac{230\text{ }}{\text{250}}\text{ = 0}\text{.92} \\
\end{align}$
Therefore, the mole fraction of xylene is as follows,
$\begin{align}
& {{\text{X}}_{\text{Xylene}}}\text{ = 1}-{{\text{X}}_{\text{Toluene}}} \\
& \therefore {{\text{X}}_{\text{Xylene}}}=1-\text{0}\text{.92 = 0}\text{.08} \\
\end{align}$
Thus, the mole fraction of toluene is equal to $\text{0}\text{.92}$ and the mole fraction of xylene is equal to$\text{0}\text{.08}$.
Note: The Raoult’s law is valid for the ideal or the dilute solutions. Applied to the non-ideal of the concentrated solution does not cause the change in the order of the magnitude of the calculated vapour pressure. Note that, when the solution contains i component then the pressure of the mixture is given as,
$\text{ }{{\text{p}}_{\text{i}}}\text{ = }{{\text{x}}_{\text{i}}}\text{ p}_{\text{i}}^{\text{0}}\text{ }$
The total vapour pressure may be expressed as,
$\text{P = }\sum{{{p}_{i}}}$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE