
Average distance of the earth from the sun is L 1 . If one year of the earth is equal to D days, then one year of another planet whose average distance from the sun is L 2 will be:
$
A:D{\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^{\dfrac{1}{2}}}days \\
B:D{\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^{\dfrac{3}{2}}}days \\
C:D{\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^{\dfrac{2}{3}}}days \\
D:D\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)days \\
$
Answer
462.9k+ views
Hint:In the given question, the concept of Kepler’s third law can be used. Kepler's third law states that the square of the orbital period of the planet is proportional to the cube of semi- major axis of the orbit. In simpler terms, the square of the 'year' of each planet divided by the cube of its distance from the Sun, gives you the same number for all the planets.
Complete step by step answer:: We know that according to Kepler’s third law, square of the orbital periods of planets is directly proportional to the cube of size of its orbit i.e. ${T^2}\alpha {R^3}$(where T = orbital period and R = size of its orbit).
In the question, we are provided with the following information:
Average distance of the earth from the sun = L 1 (Given)
One year of the earth = D days (Given)
Average distance of another planet from the sun = L 2 (Given)
One year of another planet = X days (Assumption)
According to Kepler’s third law:
For Earth:
${D^2}\alpha {L_1}^3$
Similarly for another planet:
${X^2}\alpha {L_2}^3$
Thus, we can say:
${\left( {\dfrac{X}{D}} \right)^2} = {\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^3}$
On solving, we get:
$X = D{\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^{\dfrac{3}{2}}}$days
Thus, If one year of the earth is equal to D days, then one year of another planet whose average distance from the sun is L 2 will be $D{\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^{\dfrac{3}{2}}}days$.
Hence, the correct answer is Option B.
Note:Mercury takes less time period or days to orbit the sun in comparison to Earth. It can be justified with Kepler's third law according to which the time period for a planet to orbit the sun increases with the increase in the distance of the planet from the sun.
Complete step by step answer:: We know that according to Kepler’s third law, square of the orbital periods of planets is directly proportional to the cube of size of its orbit i.e. ${T^2}\alpha {R^3}$(where T = orbital period and R = size of its orbit).
In the question, we are provided with the following information:
Average distance of the earth from the sun = L 1 (Given)
One year of the earth = D days (Given)
Average distance of another planet from the sun = L 2 (Given)
One year of another planet = X days (Assumption)
According to Kepler’s third law:
For Earth:
${D^2}\alpha {L_1}^3$
Similarly for another planet:
${X^2}\alpha {L_2}^3$
Thus, we can say:
${\left( {\dfrac{X}{D}} \right)^2} = {\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^3}$
On solving, we get:
$X = D{\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^{\dfrac{3}{2}}}$days
Thus, If one year of the earth is equal to D days, then one year of another planet whose average distance from the sun is L 2 will be $D{\left( {\dfrac{{{L_2}}}{{{L_1}}}} \right)^{\dfrac{3}{2}}}days$.
Hence, the correct answer is Option B.
Note:Mercury takes less time period or days to orbit the sun in comparison to Earth. It can be justified with Kepler's third law according to which the time period for a planet to orbit the sun increases with the increase in the distance of the planet from the sun.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
