Answer
Verified
403.5k+ views
Hint: Assume the events as \[{{E}_{1}},{{E}_{2}},{{E}_{3}}\] and A, where ball transferred is red, black, one red and one black and red ball from bag 2.Thus using Bayes theorem find the value of \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\].
Complete step-by-step answer:
It is said that bag 1 contains 3 red and 4 black balls.
Thus the total number of balls in bag 1 = 3 + 4 = 7 balls.
Similarly, in bag 2 there are 4 red and 5 black balls.
Thus the total number of balls in bag 2 = 4 + 5 = 9 balls.
It is said that 2 balls were transferred to bag 1and bag 2 in random.
Let us assume that \[{{E}_{1}},{{E}_{2}},{{E}_{3}}\] and A are such events. Such that,
\[{{E}_{1}}=\] Both transferred balls from bag 1 to bag 2 are red.
\[{{E}_{2}}=\] Both transferred balls from bag 1 to bag 2 are black.
\[{{E}_{3}}=\] out of the two transferred balls, one is red and the other is black.
A = drawing a read ball from bag 2.
What we require is \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\], i.e. probability that the transferred balls were
both black.
\[P\left( {{E}_{1}} \right)=\] probability that both the transferred balls are red
\[=\dfrac{^{3}{{C}_{2}}}{^{7}{{C}_{2}}}\].
This is of the form \[^{n}{{C}_{r}}=\dfrac{n!r!}{(n-r)!}\].
\[\therefore P\left( {{E}_{1}} \right)=\dfrac{^{3}{{C}_{2}}}{^{7}{{C}_{2}}}=\dfrac{{}^{3!}/{}_{(3-
2)!2!}}{{}^{7!}/{}_{(7-2)!2!}}=\dfrac{{}^{3!}/{}_{1!2!}}{{}^{7!}/{}_{5!2!}}=\dfrac{\dfrac{3\times
2!}{1!2!}}{\dfrac{7\times 6\times 5!}{5!\times 2}}=\dfrac{3\times 2}{7\times 6}=\dfrac{1}{7}\]
Thus we got \[P\left( {{E}_{1}} \right)={}^{1}/{}_{7}\].
Similarly \[P\left( {{E}_{2}} \right)=\] probability that the two balls are black from bag 1 to bag 2
\[P\left( {{E}_{2}} \right)=\dfrac{^{4}{{C}_{2}}}{^{7}{{C}_{2}}}=\dfrac{{}^{4!}/{}_{(4-2)!2!}}{7\times
3}=\dfrac{{}^{4!}/{}_{2!2!}}{7\times 3}=\dfrac{2\times 3}{7\times 3}=\dfrac{2}{7}\]
Value of \[P\left( {{E}_{2}} \right)={}^{2}/{}_{7}\].
Similarly, \[P\left( {{E}_{3}} \right)=\dfrac{^{3}{{C}_{1}}{{\times
}^{4}}{{C}_{1}}}{^{7}{{C}_{2}}}=\dfrac{3\times 4}{7\times 3}=\dfrac{4}{7}\]
Two balls are transferred from bag 1 to bag 2. Thus the total number of balls in bag 2 will be 11. A is
drawing of red ball from bag 2.
\[\therefore P\left( {}^{A}/{}_{{{E}_{1}}} \right)\] where two balls are added to bag 2 which are red. So
the total number of red balls in bag 2 will be 4 + 2 = 6.
\[\therefore P\left( {}^{A}/{}_{{{E}_{1}}} \right)={}^{6}/{}_{11}\].
Similarly, for \[P\left( {}^{A}/{}_{{{E}_{2}}} \right)\] = drawing of a red ball from bag 2.
\[\therefore P\left( {}^{A}/{}_{{{E}_{2}}} \right)={}^{4}/{}_{11}\].
\[P\left( {}^{A}/{}_{{{E}_{3}}} \right)\] one of the balls transferred is red, so the total number of red balls
in the bag 2 = 4 + 1 = 5.
\[\therefore P\left( {}^{A}/{}_{{{E}_{3}}} \right)={}^{5}/{}_{11}\].
We said that we need \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\]. We can solve it by using Bayes theorem.
Bayes theorem states that the relationship between the probability of hypothesis (H) before getting the evidence (E) is P(H)and the probability of the hypothesis after getting the evidence \[P\left( {H}/{E}\;
\right)\] is,
\[P\left( {H}/{E}\; \right)=\dfrac{P\left( {E}/{H}\; \right)}{P\left( E \right)}.P\left( H \right)\].
Similarly, \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)=\dfrac{P\left( {{E}_{2}} \right).P\left( {}^{A}/{}_{{{E}_{2}}}
\right)}{P\left( {{E}_{1}} \right).\left( {}^{A}/{}_{{{E}_{1}}} \right)+P\left( {{E}_{2}} \right).\left(
{}^{A}/{}_{{{E}_{2}}} \right)+P\left( {{E}_{3}} \right).\left( {}^{A}/{}_{{{E}_{3}}} \right)}........(1)\]
\[\begin{align}
& P\left( {{E}_{1}} \right)={}^{1}/{}_{7},P\left( {{E}_{2}} \right)={}^{2}/{}_{7},P\left( {{E}_{3}}
\right)={}^{4}/{}_{7}. \\
& P\left( {}^{A}/{}_{{{E}_{1}}} \right)={}^{6}/{}_{11},P\left( {}^{A}/{}_{{{E}_{2}}}
\right)={}^{4}/{}_{11},P\left( {}^{A}/{}_{{{E}_{3}}} \right)={}^{5}/{}_{11}. \\
\end{align}\]
Then substitute all this value in equation (1).
\[\begin{align}
& P\left( {}^{{{E}_{2}}}/{}_{A} \right)=\dfrac{\dfrac{2}{7}\times \dfrac{4}{11}}{\left( \dfrac{1}{7}\times
\dfrac{6}{11} \right)+\left( \dfrac{2}{7}\times \dfrac{4}{11} \right)+\left( \dfrac{4}{7}\times \dfrac{5}{11}
\right)} \\
& =\dfrac{{}^{8}/{}_{77}}{{}^{6}/{}_{77}+{}^{8}/{}_{77}+{}^{20}/{}_{77}}=\dfrac{{}^{8}/{}_{77}}{{}^{\left(
6+8+20 \right)}/{}_{77}} \\
& =\dfrac{{}^{8}/{}_{77}}{{}^{34}/{}_{77}}=\dfrac{8}{77}\times
\dfrac{77}{34}=\dfrac{8}{34}=\dfrac{4}{17}. \\
\end{align}\]
Therefore, the probability that the transferred balls are both black = \[={}^{4}/{}_{17}\].
Thus we got the required probability.
Note: Bayes theorem provides a way to revise the existing predictions or theories given new or additional evidence. The Bayes theorem describes the probability of an event based on prior knowledge of conditions.
Complete step-by-step answer:
It is said that bag 1 contains 3 red and 4 black balls.
Thus the total number of balls in bag 1 = 3 + 4 = 7 balls.
Similarly, in bag 2 there are 4 red and 5 black balls.
Thus the total number of balls in bag 2 = 4 + 5 = 9 balls.
It is said that 2 balls were transferred to bag 1and bag 2 in random.
Let us assume that \[{{E}_{1}},{{E}_{2}},{{E}_{3}}\] and A are such events. Such that,
\[{{E}_{1}}=\] Both transferred balls from bag 1 to bag 2 are red.
\[{{E}_{2}}=\] Both transferred balls from bag 1 to bag 2 are black.
\[{{E}_{3}}=\] out of the two transferred balls, one is red and the other is black.
A = drawing a read ball from bag 2.
What we require is \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\], i.e. probability that the transferred balls were
both black.
\[P\left( {{E}_{1}} \right)=\] probability that both the transferred balls are red
\[=\dfrac{^{3}{{C}_{2}}}{^{7}{{C}_{2}}}\].
This is of the form \[^{n}{{C}_{r}}=\dfrac{n!r!}{(n-r)!}\].
\[\therefore P\left( {{E}_{1}} \right)=\dfrac{^{3}{{C}_{2}}}{^{7}{{C}_{2}}}=\dfrac{{}^{3!}/{}_{(3-
2)!2!}}{{}^{7!}/{}_{(7-2)!2!}}=\dfrac{{}^{3!}/{}_{1!2!}}{{}^{7!}/{}_{5!2!}}=\dfrac{\dfrac{3\times
2!}{1!2!}}{\dfrac{7\times 6\times 5!}{5!\times 2}}=\dfrac{3\times 2}{7\times 6}=\dfrac{1}{7}\]
Thus we got \[P\left( {{E}_{1}} \right)={}^{1}/{}_{7}\].
Similarly \[P\left( {{E}_{2}} \right)=\] probability that the two balls are black from bag 1 to bag 2
\[P\left( {{E}_{2}} \right)=\dfrac{^{4}{{C}_{2}}}{^{7}{{C}_{2}}}=\dfrac{{}^{4!}/{}_{(4-2)!2!}}{7\times
3}=\dfrac{{}^{4!}/{}_{2!2!}}{7\times 3}=\dfrac{2\times 3}{7\times 3}=\dfrac{2}{7}\]
Value of \[P\left( {{E}_{2}} \right)={}^{2}/{}_{7}\].
Similarly, \[P\left( {{E}_{3}} \right)=\dfrac{^{3}{{C}_{1}}{{\times
}^{4}}{{C}_{1}}}{^{7}{{C}_{2}}}=\dfrac{3\times 4}{7\times 3}=\dfrac{4}{7}\]
Two balls are transferred from bag 1 to bag 2. Thus the total number of balls in bag 2 will be 11. A is
drawing of red ball from bag 2.
\[\therefore P\left( {}^{A}/{}_{{{E}_{1}}} \right)\] where two balls are added to bag 2 which are red. So
the total number of red balls in bag 2 will be 4 + 2 = 6.
\[\therefore P\left( {}^{A}/{}_{{{E}_{1}}} \right)={}^{6}/{}_{11}\].
Similarly, for \[P\left( {}^{A}/{}_{{{E}_{2}}} \right)\] = drawing of a red ball from bag 2.
\[\therefore P\left( {}^{A}/{}_{{{E}_{2}}} \right)={}^{4}/{}_{11}\].
\[P\left( {}^{A}/{}_{{{E}_{3}}} \right)\] one of the balls transferred is red, so the total number of red balls
in the bag 2 = 4 + 1 = 5.
\[\therefore P\left( {}^{A}/{}_{{{E}_{3}}} \right)={}^{5}/{}_{11}\].
We said that we need \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\]. We can solve it by using Bayes theorem.
Bayes theorem states that the relationship between the probability of hypothesis (H) before getting the evidence (E) is P(H)and the probability of the hypothesis after getting the evidence \[P\left( {H}/{E}\;
\right)\] is,
\[P\left( {H}/{E}\; \right)=\dfrac{P\left( {E}/{H}\; \right)}{P\left( E \right)}.P\left( H \right)\].
Similarly, \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)=\dfrac{P\left( {{E}_{2}} \right).P\left( {}^{A}/{}_{{{E}_{2}}}
\right)}{P\left( {{E}_{1}} \right).\left( {}^{A}/{}_{{{E}_{1}}} \right)+P\left( {{E}_{2}} \right).\left(
{}^{A}/{}_{{{E}_{2}}} \right)+P\left( {{E}_{3}} \right).\left( {}^{A}/{}_{{{E}_{3}}} \right)}........(1)\]
\[\begin{align}
& P\left( {{E}_{1}} \right)={}^{1}/{}_{7},P\left( {{E}_{2}} \right)={}^{2}/{}_{7},P\left( {{E}_{3}}
\right)={}^{4}/{}_{7}. \\
& P\left( {}^{A}/{}_{{{E}_{1}}} \right)={}^{6}/{}_{11},P\left( {}^{A}/{}_{{{E}_{2}}}
\right)={}^{4}/{}_{11},P\left( {}^{A}/{}_{{{E}_{3}}} \right)={}^{5}/{}_{11}. \\
\end{align}\]
Then substitute all this value in equation (1).
\[\begin{align}
& P\left( {}^{{{E}_{2}}}/{}_{A} \right)=\dfrac{\dfrac{2}{7}\times \dfrac{4}{11}}{\left( \dfrac{1}{7}\times
\dfrac{6}{11} \right)+\left( \dfrac{2}{7}\times \dfrac{4}{11} \right)+\left( \dfrac{4}{7}\times \dfrac{5}{11}
\right)} \\
& =\dfrac{{}^{8}/{}_{77}}{{}^{6}/{}_{77}+{}^{8}/{}_{77}+{}^{20}/{}_{77}}=\dfrac{{}^{8}/{}_{77}}{{}^{\left(
6+8+20 \right)}/{}_{77}} \\
& =\dfrac{{}^{8}/{}_{77}}{{}^{34}/{}_{77}}=\dfrac{8}{77}\times
\dfrac{77}{34}=\dfrac{8}{34}=\dfrac{4}{17}. \\
\end{align}\]
Therefore, the probability that the transferred balls are both black = \[={}^{4}/{}_{17}\].
Thus we got the required probability.
Note: Bayes theorem provides a way to revise the existing predictions or theories given new or additional evidence. The Bayes theorem describes the probability of an event based on prior knowledge of conditions.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE