Answer
Verified
394.5k+ views
Hint: Assume the events as \[{{E}_{1}},{{E}_{2}},{{E}_{3}}\] and A, where ball transferred is red, black, one red and one black and red ball from bag 2.Thus using Bayes theorem find the value of \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\].
Complete step-by-step answer:
It is said that bag 1 contains 3 red and 4 black balls.
Thus the total number of balls in bag 1 = 3 + 4 = 7 balls.
Similarly, in bag 2 there are 4 red and 5 black balls.
Thus the total number of balls in bag 2 = 4 + 5 = 9 balls.
It is said that 2 balls were transferred to bag 1and bag 2 in random.
Let us assume that \[{{E}_{1}},{{E}_{2}},{{E}_{3}}\] and A are such events. Such that,
\[{{E}_{1}}=\] Both transferred balls from bag 1 to bag 2 are red.
\[{{E}_{2}}=\] Both transferred balls from bag 1 to bag 2 are black.
\[{{E}_{3}}=\] out of the two transferred balls, one is red and the other is black.
A = drawing a read ball from bag 2.
What we require is \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\], i.e. probability that the transferred balls were
both black.
\[P\left( {{E}_{1}} \right)=\] probability that both the transferred balls are red
\[=\dfrac{^{3}{{C}_{2}}}{^{7}{{C}_{2}}}\].
This is of the form \[^{n}{{C}_{r}}=\dfrac{n!r!}{(n-r)!}\].
\[\therefore P\left( {{E}_{1}} \right)=\dfrac{^{3}{{C}_{2}}}{^{7}{{C}_{2}}}=\dfrac{{}^{3!}/{}_{(3-
2)!2!}}{{}^{7!}/{}_{(7-2)!2!}}=\dfrac{{}^{3!}/{}_{1!2!}}{{}^{7!}/{}_{5!2!}}=\dfrac{\dfrac{3\times
2!}{1!2!}}{\dfrac{7\times 6\times 5!}{5!\times 2}}=\dfrac{3\times 2}{7\times 6}=\dfrac{1}{7}\]
Thus we got \[P\left( {{E}_{1}} \right)={}^{1}/{}_{7}\].
Similarly \[P\left( {{E}_{2}} \right)=\] probability that the two balls are black from bag 1 to bag 2
\[P\left( {{E}_{2}} \right)=\dfrac{^{4}{{C}_{2}}}{^{7}{{C}_{2}}}=\dfrac{{}^{4!}/{}_{(4-2)!2!}}{7\times
3}=\dfrac{{}^{4!}/{}_{2!2!}}{7\times 3}=\dfrac{2\times 3}{7\times 3}=\dfrac{2}{7}\]
Value of \[P\left( {{E}_{2}} \right)={}^{2}/{}_{7}\].
Similarly, \[P\left( {{E}_{3}} \right)=\dfrac{^{3}{{C}_{1}}{{\times
}^{4}}{{C}_{1}}}{^{7}{{C}_{2}}}=\dfrac{3\times 4}{7\times 3}=\dfrac{4}{7}\]
Two balls are transferred from bag 1 to bag 2. Thus the total number of balls in bag 2 will be 11. A is
drawing of red ball from bag 2.
\[\therefore P\left( {}^{A}/{}_{{{E}_{1}}} \right)\] where two balls are added to bag 2 which are red. So
the total number of red balls in bag 2 will be 4 + 2 = 6.
\[\therefore P\left( {}^{A}/{}_{{{E}_{1}}} \right)={}^{6}/{}_{11}\].
Similarly, for \[P\left( {}^{A}/{}_{{{E}_{2}}} \right)\] = drawing of a red ball from bag 2.
\[\therefore P\left( {}^{A}/{}_{{{E}_{2}}} \right)={}^{4}/{}_{11}\].
\[P\left( {}^{A}/{}_{{{E}_{3}}} \right)\] one of the balls transferred is red, so the total number of red balls
in the bag 2 = 4 + 1 = 5.
\[\therefore P\left( {}^{A}/{}_{{{E}_{3}}} \right)={}^{5}/{}_{11}\].
We said that we need \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\]. We can solve it by using Bayes theorem.
Bayes theorem states that the relationship between the probability of hypothesis (H) before getting the evidence (E) is P(H)and the probability of the hypothesis after getting the evidence \[P\left( {H}/{E}\;
\right)\] is,
\[P\left( {H}/{E}\; \right)=\dfrac{P\left( {E}/{H}\; \right)}{P\left( E \right)}.P\left( H \right)\].
Similarly, \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)=\dfrac{P\left( {{E}_{2}} \right).P\left( {}^{A}/{}_{{{E}_{2}}}
\right)}{P\left( {{E}_{1}} \right).\left( {}^{A}/{}_{{{E}_{1}}} \right)+P\left( {{E}_{2}} \right).\left(
{}^{A}/{}_{{{E}_{2}}} \right)+P\left( {{E}_{3}} \right).\left( {}^{A}/{}_{{{E}_{3}}} \right)}........(1)\]
\[\begin{align}
& P\left( {{E}_{1}} \right)={}^{1}/{}_{7},P\left( {{E}_{2}} \right)={}^{2}/{}_{7},P\left( {{E}_{3}}
\right)={}^{4}/{}_{7}. \\
& P\left( {}^{A}/{}_{{{E}_{1}}} \right)={}^{6}/{}_{11},P\left( {}^{A}/{}_{{{E}_{2}}}
\right)={}^{4}/{}_{11},P\left( {}^{A}/{}_{{{E}_{3}}} \right)={}^{5}/{}_{11}. \\
\end{align}\]
Then substitute all this value in equation (1).
\[\begin{align}
& P\left( {}^{{{E}_{2}}}/{}_{A} \right)=\dfrac{\dfrac{2}{7}\times \dfrac{4}{11}}{\left( \dfrac{1}{7}\times
\dfrac{6}{11} \right)+\left( \dfrac{2}{7}\times \dfrac{4}{11} \right)+\left( \dfrac{4}{7}\times \dfrac{5}{11}
\right)} \\
& =\dfrac{{}^{8}/{}_{77}}{{}^{6}/{}_{77}+{}^{8}/{}_{77}+{}^{20}/{}_{77}}=\dfrac{{}^{8}/{}_{77}}{{}^{\left(
6+8+20 \right)}/{}_{77}} \\
& =\dfrac{{}^{8}/{}_{77}}{{}^{34}/{}_{77}}=\dfrac{8}{77}\times
\dfrac{77}{34}=\dfrac{8}{34}=\dfrac{4}{17}. \\
\end{align}\]
Therefore, the probability that the transferred balls are both black = \[={}^{4}/{}_{17}\].
Thus we got the required probability.
Note: Bayes theorem provides a way to revise the existing predictions or theories given new or additional evidence. The Bayes theorem describes the probability of an event based on prior knowledge of conditions.
Complete step-by-step answer:
It is said that bag 1 contains 3 red and 4 black balls.
Thus the total number of balls in bag 1 = 3 + 4 = 7 balls.
Similarly, in bag 2 there are 4 red and 5 black balls.
Thus the total number of balls in bag 2 = 4 + 5 = 9 balls.
It is said that 2 balls were transferred to bag 1and bag 2 in random.
Let us assume that \[{{E}_{1}},{{E}_{2}},{{E}_{3}}\] and A are such events. Such that,
\[{{E}_{1}}=\] Both transferred balls from bag 1 to bag 2 are red.
\[{{E}_{2}}=\] Both transferred balls from bag 1 to bag 2 are black.
\[{{E}_{3}}=\] out of the two transferred balls, one is red and the other is black.
A = drawing a read ball from bag 2.
What we require is \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\], i.e. probability that the transferred balls were
both black.
\[P\left( {{E}_{1}} \right)=\] probability that both the transferred balls are red
\[=\dfrac{^{3}{{C}_{2}}}{^{7}{{C}_{2}}}\].
This is of the form \[^{n}{{C}_{r}}=\dfrac{n!r!}{(n-r)!}\].
\[\therefore P\left( {{E}_{1}} \right)=\dfrac{^{3}{{C}_{2}}}{^{7}{{C}_{2}}}=\dfrac{{}^{3!}/{}_{(3-
2)!2!}}{{}^{7!}/{}_{(7-2)!2!}}=\dfrac{{}^{3!}/{}_{1!2!}}{{}^{7!}/{}_{5!2!}}=\dfrac{\dfrac{3\times
2!}{1!2!}}{\dfrac{7\times 6\times 5!}{5!\times 2}}=\dfrac{3\times 2}{7\times 6}=\dfrac{1}{7}\]
Thus we got \[P\left( {{E}_{1}} \right)={}^{1}/{}_{7}\].
Similarly \[P\left( {{E}_{2}} \right)=\] probability that the two balls are black from bag 1 to bag 2
\[P\left( {{E}_{2}} \right)=\dfrac{^{4}{{C}_{2}}}{^{7}{{C}_{2}}}=\dfrac{{}^{4!}/{}_{(4-2)!2!}}{7\times
3}=\dfrac{{}^{4!}/{}_{2!2!}}{7\times 3}=\dfrac{2\times 3}{7\times 3}=\dfrac{2}{7}\]
Value of \[P\left( {{E}_{2}} \right)={}^{2}/{}_{7}\].
Similarly, \[P\left( {{E}_{3}} \right)=\dfrac{^{3}{{C}_{1}}{{\times
}^{4}}{{C}_{1}}}{^{7}{{C}_{2}}}=\dfrac{3\times 4}{7\times 3}=\dfrac{4}{7}\]
Two balls are transferred from bag 1 to bag 2. Thus the total number of balls in bag 2 will be 11. A is
drawing of red ball from bag 2.
\[\therefore P\left( {}^{A}/{}_{{{E}_{1}}} \right)\] where two balls are added to bag 2 which are red. So
the total number of red balls in bag 2 will be 4 + 2 = 6.
\[\therefore P\left( {}^{A}/{}_{{{E}_{1}}} \right)={}^{6}/{}_{11}\].
Similarly, for \[P\left( {}^{A}/{}_{{{E}_{2}}} \right)\] = drawing of a red ball from bag 2.
\[\therefore P\left( {}^{A}/{}_{{{E}_{2}}} \right)={}^{4}/{}_{11}\].
\[P\left( {}^{A}/{}_{{{E}_{3}}} \right)\] one of the balls transferred is red, so the total number of red balls
in the bag 2 = 4 + 1 = 5.
\[\therefore P\left( {}^{A}/{}_{{{E}_{3}}} \right)={}^{5}/{}_{11}\].
We said that we need \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)\]. We can solve it by using Bayes theorem.
Bayes theorem states that the relationship between the probability of hypothesis (H) before getting the evidence (E) is P(H)and the probability of the hypothesis after getting the evidence \[P\left( {H}/{E}\;
\right)\] is,
\[P\left( {H}/{E}\; \right)=\dfrac{P\left( {E}/{H}\; \right)}{P\left( E \right)}.P\left( H \right)\].
Similarly, \[P\left( {}^{{{E}_{2}}}/{}_{A} \right)=\dfrac{P\left( {{E}_{2}} \right).P\left( {}^{A}/{}_{{{E}_{2}}}
\right)}{P\left( {{E}_{1}} \right).\left( {}^{A}/{}_{{{E}_{1}}} \right)+P\left( {{E}_{2}} \right).\left(
{}^{A}/{}_{{{E}_{2}}} \right)+P\left( {{E}_{3}} \right).\left( {}^{A}/{}_{{{E}_{3}}} \right)}........(1)\]
\[\begin{align}
& P\left( {{E}_{1}} \right)={}^{1}/{}_{7},P\left( {{E}_{2}} \right)={}^{2}/{}_{7},P\left( {{E}_{3}}
\right)={}^{4}/{}_{7}. \\
& P\left( {}^{A}/{}_{{{E}_{1}}} \right)={}^{6}/{}_{11},P\left( {}^{A}/{}_{{{E}_{2}}}
\right)={}^{4}/{}_{11},P\left( {}^{A}/{}_{{{E}_{3}}} \right)={}^{5}/{}_{11}. \\
\end{align}\]
Then substitute all this value in equation (1).
\[\begin{align}
& P\left( {}^{{{E}_{2}}}/{}_{A} \right)=\dfrac{\dfrac{2}{7}\times \dfrac{4}{11}}{\left( \dfrac{1}{7}\times
\dfrac{6}{11} \right)+\left( \dfrac{2}{7}\times \dfrac{4}{11} \right)+\left( \dfrac{4}{7}\times \dfrac{5}{11}
\right)} \\
& =\dfrac{{}^{8}/{}_{77}}{{}^{6}/{}_{77}+{}^{8}/{}_{77}+{}^{20}/{}_{77}}=\dfrac{{}^{8}/{}_{77}}{{}^{\left(
6+8+20 \right)}/{}_{77}} \\
& =\dfrac{{}^{8}/{}_{77}}{{}^{34}/{}_{77}}=\dfrac{8}{77}\times
\dfrac{77}{34}=\dfrac{8}{34}=\dfrac{4}{17}. \\
\end{align}\]
Therefore, the probability that the transferred balls are both black = \[={}^{4}/{}_{17}\].
Thus we got the required probability.
Note: Bayes theorem provides a way to revise the existing predictions or theories given new or additional evidence. The Bayes theorem describes the probability of an event based on prior knowledge of conditions.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE