
What is the basic cause of quantisation of charge?
Answer
220.5k+ views
Hint: If protons and electrons are the most fundamental particles and only charge carriers in the universe, then all the observable charges must be integral multiples of multiple electrons and protons.
Step by Step Answer
Charge quantization is the principle that the charge of an object is an integral multiple of the elementary charge.
Now, since protons and electrons are the only charge carriers in the universe, therefore all the observable charges must be integral multiple of electron. If an object contains $n$, electrons and ${n_2}$ protons, then the net charge on object is:
$ - {n_1}\left( e \right) + {n_2}\left( e \right) = \left( {{n_1} - {n_2}} \right)e$
Indeed, there are elementary particles other than protons and electrons, which carry charge. But all the elementary particles have charges which are integral multiple of $e$.. Thus charge on any object is always an integral multiple of $e$ and can be changed in steps of$e$, i.e. charge is quantized.
Note:
The step size $e$ is usually so small that we can easily neglect the quantization. If $l\,\mu \,C$ contains $n$ units of basic charge $e$ where,
$n = \dfrac{{l\,\mu \,C}}{{1.6 \times {{10}^{ - 19C}}}} = 6 \times {10^{12}}$
The step size is thus very small as compared to the charges usually found. Hence in many cases, we assume a continuous charge variation.
Step by Step Answer
Charge quantization is the principle that the charge of an object is an integral multiple of the elementary charge.
Now, since protons and electrons are the only charge carriers in the universe, therefore all the observable charges must be integral multiple of electron. If an object contains $n$, electrons and ${n_2}$ protons, then the net charge on object is:
$ - {n_1}\left( e \right) + {n_2}\left( e \right) = \left( {{n_1} - {n_2}} \right)e$
Indeed, there are elementary particles other than protons and electrons, which carry charge. But all the elementary particles have charges which are integral multiple of $e$.. Thus charge on any object is always an integral multiple of $e$ and can be changed in steps of$e$, i.e. charge is quantized.
Note:
The step size $e$ is usually so small that we can easily neglect the quantization. If $l\,\mu \,C$ contains $n$ units of basic charge $e$ where,
$n = \dfrac{{l\,\mu \,C}}{{1.6 \times {{10}^{ - 19C}}}} = 6 \times {10^{12}}$
The step size is thus very small as compared to the charges usually found. Hence in many cases, we assume a continuous charge variation.
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Young’s Double Slit Experiment Derivation Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

