Answer
Verified
99.9k+ views
Hint: If protons and electrons are the most fundamental particles and only charge carriers in the universe, then all the observable charges must be integral multiples of multiple electrons and protons.
Step by Step Answer
Charge quantization is the principle that the charge of an object is an integral multiple of the elementary charge.
Now, since protons and electrons are the only charge carriers in the universe, therefore all the observable charges must be integral multiple of electron. If an object contains $n$, electrons and ${n_2}$ protons, then the net charge on object is:
$ - {n_1}\left( e \right) + {n_2}\left( e \right) = \left( {{n_1} - {n_2}} \right)e$
Indeed, there are elementary particles other than protons and electrons, which carry charge. But all the elementary particles have charges which are integral multiple of $e$.. Thus charge on any object is always an integral multiple of $e$ and can be changed in steps of$e$, i.e. charge is quantized.
Note:
The step size $e$ is usually so small that we can easily neglect the quantization. If $l\,\mu \,C$ contains $n$ units of basic charge $e$ where,
$n = \dfrac{{l\,\mu \,C}}{{1.6 \times {{10}^{ - 19C}}}} = 6 \times {10^{12}}$
The step size is thus very small as compared to the charges usually found. Hence in many cases, we assume a continuous charge variation.
Step by Step Answer
Charge quantization is the principle that the charge of an object is an integral multiple of the elementary charge.
Now, since protons and electrons are the only charge carriers in the universe, therefore all the observable charges must be integral multiple of electron. If an object contains $n$, electrons and ${n_2}$ protons, then the net charge on object is:
$ - {n_1}\left( e \right) + {n_2}\left( e \right) = \left( {{n_1} - {n_2}} \right)e$
Indeed, there are elementary particles other than protons and electrons, which carry charge. But all the elementary particles have charges which are integral multiple of $e$.. Thus charge on any object is always an integral multiple of $e$ and can be changed in steps of$e$, i.e. charge is quantized.
Note:
The step size $e$ is usually so small that we can easily neglect the quantization. If $l\,\mu \,C$ contains $n$ units of basic charge $e$ where,
$n = \dfrac{{l\,\mu \,C}}{{1.6 \times {{10}^{ - 19C}}}} = 6 \times {10^{12}}$
The step size is thus very small as compared to the charges usually found. Hence in many cases, we assume a continuous charge variation.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main