Answer
Verified
497.4k+ views
Hint: Use the formula of sum of ‘n’ terms in A.P i.e. ${{S}_{n}}=\dfrac{n}{2}[a+l]$ and subtract the sum of two numbers which is given and then equate it with the given condition to get the final answer.
Complete step-by-step answer:
To solve the above problem we will first assume the two numbers as ‘a’ and ‘b’ respectively,
Therefore from given condition we can write,
$a+b=2\dfrac{1}{6}$
$\therefore a+b=\dfrac{13}{6}$ ……………………………………… (1)
Assume the even number of arithmetic means inserted between ‘a’ and ‘b’ be ‘2N’.
As given in the problem that the sum of means exceeds their number by unity therefore we can write,
Sum of Arithmetic Means = 2N+1 …………………… (2)
Now to satisfy above condition we should find the sum of arithmetic means and for that we should know the formula given below,
Formula:
Sum of ‘n’ numbers for an Arithmetic Progression is given by,
${{S}_{n}}=\dfrac{n}{2}\left[ a+l \right]$
Where, a- First term of A.P.
l - Last term of A.P.
As the arithmetic means are inserted in between the two numbers therefore we can say that ‘a’ ‘2N arithmetic means’ and ‘b’ all are in Arithmetic Progression with, ‘a’ as its first term and ‘b’ as its last term.
Therefore by using the formula given above we can write the sum of A.P as shown below,
${{S}_{b}}=\dfrac{b}{2}\left[ a+b \right]$
Now we can express the number of ${{b}^{th}}$ term as [2N+2] therefore we can replace it with b in above equation,
${{S}_{[2N+2]}}=\dfrac{[2N+2]}{2}\left[ a+b \right]$
If we put the value of equation (1) in above equation we will get,
$\therefore {{S}_{[2N+2]}}=\dfrac{[2N+2]}{2}\left[ \dfrac{13}{6} \right]$
$\therefore {{S}_{[2N+2]}}=\dfrac{2[N+1]}{2}\left[ \dfrac{13}{6} \right]$
$\therefore {{S}_{[2N+2]}}=[N+1]\left[ \dfrac{13}{6} \right]$………………………………………. (3)
Now we can easily find out the sum of arithmetic means by simply just subtracting the sum of ‘a’ and ‘b’ from ${{S}_{[2N+2]}}$ therefore we will get,
Sum of Arithmetic Means $={{S}_{[2N+2]}}-(a+b)$
By substituting the values of equation (1) and equation (3) in above equation we will get,
Sum of Arithmetic Means $=[N+1]\left[ \dfrac{13}{6} \right]-\left[ \dfrac{13}{6} \right]$
By taking $\dfrac{13}{6}$ common we will get,
Sum of Arithmetic Means $=\dfrac{13}{6}\left[ \left( N+1 \right)-1 \right]$
Sum of Arithmetic Means $=\dfrac{13}{6}N$……………………………… (4)
Now to get the final answer we will put the value of equation (4) in equation (2) therefore we will get,
$\therefore \dfrac{13}{6}N=2N+1$
$\therefore \dfrac{13}{6}N-2N=1$
$\therefore N\left( \dfrac{13}{6}-2 \right)=1$
$\therefore N\left( \dfrac{13-6\times 2}{6} \right)=1$
\[\therefore N\left( \dfrac{13-12}{6} \right)=1\]
\[\therefore N\left( \dfrac{1}{6} \right)=1\]
\[\therefore N=6\]
As we have assumed the number of means inserted to be 2N therefore we can write,
Total numbers of means inserted = 2N \[=2\times 6\] \[=12\]
Therefore the total number of means inserted between the two numbers is 16.
Note: Do remember to subtract the sum of two numbers from ${{S}_{[2N+2]}}$ otherwise the answer will become wrong. If you won’t get the method then you can solve this problem by writing an A.P. of all the means and the two numbers, like, a, A,A+d,A+2d,………….,A+(2N-1)d, b. Where ‘A’ is the first mean and ‘A+(2N-1)d’ be the ‘2N th’ mean and likewise you can apply the conditions.
Complete step-by-step answer:
To solve the above problem we will first assume the two numbers as ‘a’ and ‘b’ respectively,
Therefore from given condition we can write,
$a+b=2\dfrac{1}{6}$
$\therefore a+b=\dfrac{13}{6}$ ……………………………………… (1)
Assume the even number of arithmetic means inserted between ‘a’ and ‘b’ be ‘2N’.
As given in the problem that the sum of means exceeds their number by unity therefore we can write,
Sum of Arithmetic Means = 2N+1 …………………… (2)
Now to satisfy above condition we should find the sum of arithmetic means and for that we should know the formula given below,
Formula:
Sum of ‘n’ numbers for an Arithmetic Progression is given by,
${{S}_{n}}=\dfrac{n}{2}\left[ a+l \right]$
Where, a- First term of A.P.
l - Last term of A.P.
As the arithmetic means are inserted in between the two numbers therefore we can say that ‘a’ ‘2N arithmetic means’ and ‘b’ all are in Arithmetic Progression with, ‘a’ as its first term and ‘b’ as its last term.
Therefore by using the formula given above we can write the sum of A.P as shown below,
${{S}_{b}}=\dfrac{b}{2}\left[ a+b \right]$
Now we can express the number of ${{b}^{th}}$ term as [2N+2] therefore we can replace it with b in above equation,
${{S}_{[2N+2]}}=\dfrac{[2N+2]}{2}\left[ a+b \right]$
If we put the value of equation (1) in above equation we will get,
$\therefore {{S}_{[2N+2]}}=\dfrac{[2N+2]}{2}\left[ \dfrac{13}{6} \right]$
$\therefore {{S}_{[2N+2]}}=\dfrac{2[N+1]}{2}\left[ \dfrac{13}{6} \right]$
$\therefore {{S}_{[2N+2]}}=[N+1]\left[ \dfrac{13}{6} \right]$………………………………………. (3)
Now we can easily find out the sum of arithmetic means by simply just subtracting the sum of ‘a’ and ‘b’ from ${{S}_{[2N+2]}}$ therefore we will get,
Sum of Arithmetic Means $={{S}_{[2N+2]}}-(a+b)$
By substituting the values of equation (1) and equation (3) in above equation we will get,
Sum of Arithmetic Means $=[N+1]\left[ \dfrac{13}{6} \right]-\left[ \dfrac{13}{6} \right]$
By taking $\dfrac{13}{6}$ common we will get,
Sum of Arithmetic Means $=\dfrac{13}{6}\left[ \left( N+1 \right)-1 \right]$
Sum of Arithmetic Means $=\dfrac{13}{6}N$……………………………… (4)
Now to get the final answer we will put the value of equation (4) in equation (2) therefore we will get,
$\therefore \dfrac{13}{6}N=2N+1$
$\therefore \dfrac{13}{6}N-2N=1$
$\therefore N\left( \dfrac{13}{6}-2 \right)=1$
$\therefore N\left( \dfrac{13-6\times 2}{6} \right)=1$
\[\therefore N\left( \dfrac{13-12}{6} \right)=1\]
\[\therefore N\left( \dfrac{1}{6} \right)=1\]
\[\therefore N=6\]
As we have assumed the number of means inserted to be 2N therefore we can write,
Total numbers of means inserted = 2N \[=2\times 6\] \[=12\]
Therefore the total number of means inserted between the two numbers is 16.
Note: Do remember to subtract the sum of two numbers from ${{S}_{[2N+2]}}$ otherwise the answer will become wrong. If you won’t get the method then you can solve this problem by writing an A.P. of all the means and the two numbers, like, a, A,A+d,A+2d,………….,A+(2N-1)d, b. Where ‘A’ is the first mean and ‘A+(2N-1)d’ be the ‘2N th’ mean and likewise you can apply the conditions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE