Answer
Verified
367.5k+ views
Hint: A black body is an idealized object that absorbs all electromagnetic radiation it comes in contact with. It then emits the absorbed radiation as thermal radiation in a continuous spectrum according to its temperature. It follows certain laws when it emits thermal radiation.
Formula used:
${j^*} = \sigma {T^4}$ where ${j^*}$ is the black body radiant emittance, $\sigma $ is the Stefan-Boltzmann constant and $T$ is the thermodynamic temperature .
Complete step-by-step answer:
The radiation emitted by a black body is called black body radiation. The distribution of energy of a black body radiation $I$ at different temperatures $T$ , with its wavelength $\lambda $ is as shown in the figure
Characteristics of a blackbody radiation spectra are:
(1) The emissive power of a blackbody $I$ , for every wavelength $\lambda $ , increases with increasing temperature.
(2) Each curve has a characteristic form with a maximum for $I$ at a certain wavelength ${\lambda _m}$
(3) ${\lambda _m}$ depends only on the absolute temperature of the blackbody and, with increasing temperature, shifts towards shorter wavelength (i.e. towards the U.V. end of the light spectrum).
(4) The area under each curve gives the total radiant power per unit area $I$ of a blackbody at that temperature and total radiation emitted is directly proportional to ${T^4}$ according to Stefan's law.
Note: The Stefan-Boltzmann constant, $\sigma $ , is derived from other known physical constants in use. The value of the constant has been widely accepted as \[\sigma = \dfrac{{2{\pi ^2}{k^4}}}{{15{c^2}{h^3}}}\] where $k$ is the Boltzmann constant $h$ is Planck’s constant and $c$ is the speed of light in vacuum.
Formula used:
${j^*} = \sigma {T^4}$ where ${j^*}$ is the black body radiant emittance, $\sigma $ is the Stefan-Boltzmann constant and $T$ is the thermodynamic temperature .
Complete step-by-step answer:
The radiation emitted by a black body is called black body radiation. The distribution of energy of a black body radiation $I$ at different temperatures $T$ , with its wavelength $\lambda $ is as shown in the figure
Characteristics of a blackbody radiation spectra are:
(1) The emissive power of a blackbody $I$ , for every wavelength $\lambda $ , increases with increasing temperature.
(2) Each curve has a characteristic form with a maximum for $I$ at a certain wavelength ${\lambda _m}$
(3) ${\lambda _m}$ depends only on the absolute temperature of the blackbody and, with increasing temperature, shifts towards shorter wavelength (i.e. towards the U.V. end of the light spectrum).
(4) The area under each curve gives the total radiant power per unit area $I$ of a blackbody at that temperature and total radiation emitted is directly proportional to ${T^4}$ according to Stefan's law.
Note: The Stefan-Boltzmann constant, $\sigma $ , is derived from other known physical constants in use. The value of the constant has been widely accepted as \[\sigma = \dfrac{{2{\pi ^2}{k^4}}}{{15{c^2}{h^3}}}\] where $k$ is the Boltzmann constant $h$ is Planck’s constant and $c$ is the speed of light in vacuum.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE