
Bond dissociation enthalpy is used to defining enthalpy change of a reaction as
$\left( 1 \right)$ $\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
$\left( 2 \right)$ $\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
$(3)$ $\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
$\left( 4 \right)$ None of these
Answer
540.9k+ views
Hint: The Bond dissociation enthalpy is an enthalpy used to break (Different atoms like A-B) one mole of the bond to give separate two gases atom (A+B). If the energy is used to break homolysis bonds (Same atom like A-A) to give free radicals ( ${A^ \bullet } + {A^ \bullet }$).
Complete step by step answer:
As we know the bond enthalpy is defined as the change in the bond dissociation enthalpy bond broken of reactants) and bond dissociation enthalpy (bond formation of reactant).
In $\left( 1 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
In $\left( 2 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond formation of reaction) and the bond dissociation enthalpy (bond broken of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
In $\left( 3 \right)$, , Bond enthalpy is defined as the sum of the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
As we, discussed above the definition and the equation $\left( 1 \right)$ are mention the same condition for the bond dissociation enthalpy
Hence, the correct option is $\left( 1 \right)$ .
Note:
Hess’s law is defined as the sum of the changes in enthalpy for a series of intermediate reaction steps to find the overall change in enthalpy for a reaction.
$1.$Enthalpy change for a reaction is independent of the number of ways a product can be obtained. If the initial and final conditions are the same.
$2.$Negative enthalpy change for a reaction indicates exothermic process, while positive enthalpy change corresponds to endothermic process.
Complete step by step answer:
As we know the bond enthalpy is defined as the change in the bond dissociation enthalpy bond broken of reactants) and bond dissociation enthalpy (bond formation of reactant).
In $\left( 1 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
In $\left( 2 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond formation of reaction) and the bond dissociation enthalpy (bond broken of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
In $\left( 3 \right)$, , Bond enthalpy is defined as the sum of the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
As we, discussed above the definition and the equation $\left( 1 \right)$ are mention the same condition for the bond dissociation enthalpy
Hence, the correct option is $\left( 1 \right)$ .
Note:
Hess’s law is defined as the sum of the changes in enthalpy for a series of intermediate reaction steps to find the overall change in enthalpy for a reaction.
$1.$Enthalpy change for a reaction is independent of the number of ways a product can be obtained. If the initial and final conditions are the same.
$2.$Negative enthalpy change for a reaction indicates exothermic process, while positive enthalpy change corresponds to endothermic process.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

