Bond order of \[\text{B}{{\text{e}}_{\text{2}}}\] is
A. 1
B. 2
C. 3
D. 0
Answer
Verified
460.2k+ views
Hint: According to the molecular orbital theory, the bond order is defined as the number of covalent bonds in a molecule. Bond order is equal to half of the difference between the number of electrons in bonding (\[{{N}_{b}}\]) and antibonding molecular orbitals (\[{{N}_{a}}\]).
Complete Solution :
\[\text{B}{{\text{e}}_{\text{2}}}\] molecule will be formed by the overlapping of atomic orbitals of two beryllium atoms.
A Be atom has four electrons. It has two valence electrons and its electronic configuration is \[1{{s}^{2}}2{{s}^{2}}\]. Therefore, \[\text{B}{{\text{e}}_{\text{2}}}\] molecule has eight electrons which are to be filled in four molecular orbitals.
Thus, electronic configuration of \[\text{B}{{\text{e}}_{\text{2}}}\] is \[{{\left( \sigma 1s \right)}^{2}}{{\left( {{\sigma }^{*}}1s \right)}^{2}}{{\left( \sigma 2s \right)}^{2}}{{\left( {{\sigma }^{*}}2s \right)}^{2}}\]
Here, bonding electrons, \[{{N}_{b}}\] = 4 and anti-bonding electrons, \[{{N}_{a}}\]= 4
Therefore, bond order (B.O.) of \[\text{B}{{\text{e}}_{\text{2}}}\] molecule is
\[\begin{align}
& \text{B}\text{.O}\text{.=}\frac{1}{2}({{N}_{b}}-{{N}_{a}}) \\
& \text{B}\text{.O}\text{.}=\frac{1}{2}(4-4)=0 \\
\end{align}\]
- Zero value of bond order corresponds to non-existence of \[\text{B}{{\text{e}}_{\text{2}}}\] molecule.
So, the correct answer is “Option D”.
Note: The bond order of a molecule conveys the following information:
1. The stability of a molecule can also be expressed in terms of bond order. Higher the bond order, more stable is the molecule.
2. Bond length: Bond order and bond length are inversely related. Thus, higher the bond order, shorter is the bond length and vice-versa.
3. Bond dissociation energy: Bond order in a molecule is directly proportional to its bond dissociation energy. Greater the bond order, more will be the value of bond dissociation energy.
Complete Solution :
\[\text{B}{{\text{e}}_{\text{2}}}\] molecule will be formed by the overlapping of atomic orbitals of two beryllium atoms.
A Be atom has four electrons. It has two valence electrons and its electronic configuration is \[1{{s}^{2}}2{{s}^{2}}\]. Therefore, \[\text{B}{{\text{e}}_{\text{2}}}\] molecule has eight electrons which are to be filled in four molecular orbitals.
Thus, electronic configuration of \[\text{B}{{\text{e}}_{\text{2}}}\] is \[{{\left( \sigma 1s \right)}^{2}}{{\left( {{\sigma }^{*}}1s \right)}^{2}}{{\left( \sigma 2s \right)}^{2}}{{\left( {{\sigma }^{*}}2s \right)}^{2}}\]
Here, bonding electrons, \[{{N}_{b}}\] = 4 and anti-bonding electrons, \[{{N}_{a}}\]= 4
Therefore, bond order (B.O.) of \[\text{B}{{\text{e}}_{\text{2}}}\] molecule is
\[\begin{align}
& \text{B}\text{.O}\text{.=}\frac{1}{2}({{N}_{b}}-{{N}_{a}}) \\
& \text{B}\text{.O}\text{.}=\frac{1}{2}(4-4)=0 \\
\end{align}\]
- Zero value of bond order corresponds to non-existence of \[\text{B}{{\text{e}}_{\text{2}}}\] molecule.
So, the correct answer is “Option D”.
Note: The bond order of a molecule conveys the following information:
1. The stability of a molecule can also be expressed in terms of bond order. Higher the bond order, more stable is the molecule.
2. Bond length: Bond order and bond length are inversely related. Thus, higher the bond order, shorter is the bond length and vice-versa.
3. Bond dissociation energy: Bond order in a molecule is directly proportional to its bond dissociation energy. Greater the bond order, more will be the value of bond dissociation energy.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE