
Calculate the angle of 1’ (minute of arc or arc min).
Answer
580.2k+ views
Hint:
We will convert \[\pi \] into degrees for getting angle for 1’ and we will see what the arc minute is. We will convert the radian into arc minute. Then we will find the radian of the arc min, then we will convert it into the angle into degree. We will form an equation and solve further to find the solution; this will provide us the answer.
Complete step by step solution:
As we know, \[\pi \] radian \[ = 180^\circ \]
By the above we can say that
\[1^\circ = \dfrac{\pi }{{180^\circ }}\] radians …(1)
As we will convert degree into the minutes
\[ \Rightarrow 1^\circ = 60'\] (‘ indicates minutes)
So, by equation 1 we can say that
\[ \Rightarrow 1^\circ = \dfrac{\pi }{{180^\circ }}\]
We will replace \[1^\circ \] to 60’ in the equation 1
\[ \Rightarrow 60' = \dfrac{\pi }{{180^\circ }}\]
As we want to find the 1’ so we will the equation by 60,
\[ \Rightarrow 1' = \dfrac{\pi }{{(180 \times 60)}}\] radian
After calculating we will get
\[ \Rightarrow 1' = \dfrac{\pi }{{10800}}\] radian
Therefore the 1’ is
\[ \Rightarrow 1' = \dfrac{\pi }{{10800}}\] radian
As we know the radian to degree conversion formula is
\[ \Rightarrow \min = \left( {x \times \dfrac{{180}}{\pi }} \right)\deg \]
Now we have the value of x, we will put in the above conversion equation
\[ \Rightarrow 1' = \dfrac{\pi }{{10800}} \times \dfrac{{180}}{\pi }\]
Hence on simplification we get,
\[ \Rightarrow 1' = 0.0167^\circ \]
Note:
A minute of arc, arc minute, or minute arc is a unit of angular measurement equal to one degree. Since one degree is of a turn, one minute of arc is of a turn. A minute of arc is of a radian. It is used to find the degree into time form, which is needed in terms of finding time and also this conversion helps in finding the planet's latitude and longitude to find the exact location.
We will convert \[\pi \] into degrees for getting angle for 1’ and we will see what the arc minute is. We will convert the radian into arc minute. Then we will find the radian of the arc min, then we will convert it into the angle into degree. We will form an equation and solve further to find the solution; this will provide us the answer.
Complete step by step solution:
As we know, \[\pi \] radian \[ = 180^\circ \]
By the above we can say that
\[1^\circ = \dfrac{\pi }{{180^\circ }}\] radians …(1)
As we will convert degree into the minutes
\[ \Rightarrow 1^\circ = 60'\] (‘ indicates minutes)
So, by equation 1 we can say that
\[ \Rightarrow 1^\circ = \dfrac{\pi }{{180^\circ }}\]
We will replace \[1^\circ \] to 60’ in the equation 1
\[ \Rightarrow 60' = \dfrac{\pi }{{180^\circ }}\]
As we want to find the 1’ so we will the equation by 60,
\[ \Rightarrow 1' = \dfrac{\pi }{{(180 \times 60)}}\] radian
After calculating we will get
\[ \Rightarrow 1' = \dfrac{\pi }{{10800}}\] radian
Therefore the 1’ is
\[ \Rightarrow 1' = \dfrac{\pi }{{10800}}\] radian
As we know the radian to degree conversion formula is
\[ \Rightarrow \min = \left( {x \times \dfrac{{180}}{\pi }} \right)\deg \]
Now we have the value of x, we will put in the above conversion equation
\[ \Rightarrow 1' = \dfrac{\pi }{{10800}} \times \dfrac{{180}}{\pi }\]
Hence on simplification we get,
\[ \Rightarrow 1' = 0.0167^\circ \]
Note:
A minute of arc, arc minute, or minute arc is a unit of angular measurement equal to one degree. Since one degree is of a turn, one minute of arc is of a turn. A minute of arc is of a radian. It is used to find the degree into time form, which is needed in terms of finding time and also this conversion helps in finding the planet's latitude and longitude to find the exact location.
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Trending doubts
The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

How many lines of symmetry does a regular pentagon-class-7-maths-CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

The plural of Chief is Chieves A True B False class 7 english CBSE


