How do you calculate the dipole moment of water?
Answer
Verified
453k+ views
Hint: Dipole moment is a vector quantity means it has magnitude and direction. Dipole moment is a measure of polarity of chemical bonds present in between two atoms in a particular molecule. In dipole moment the separation of negative and positive charge takes place.
Complete answer:
- In the question they asked how we can calculate the dipole moment of water.
- There is a formula to calculate the dipole moment and it is as follows.
\[\text{Dipole moment (}\mu \text{) = charge (Q) }\times \text{ distance of separation (r)}\]
- Now coming to the calculation of the dipole moment of the water molecule.
- We know that the electrons are localized around the oxygen atom in the water molecule.
- The localization of electrons is due to the high electronegativity of the central oxygen atom in water molecules.
- Due to the presence of lone pairs of electrons on the oxygen molecule the shape of the molecule is going to be a bent shape.
- The shape and charge separation in the water can be seen in the following picture.
- The bond angle which is present in water is 104.5$^{o}$ .
- The individual bond moment of each hydrogen-oxygen bond is 1.5 D.
- There are two hydrogen in water molecules, the two hydrogen creates their individual dipole moments.
- We have to calculate the individual dipole moments and later we have to do the sum to get the dipole moment of the water molecule.
- The dipole moment caused by the left hydrogen in water molecule = $1.5D\times \cos ({{52.2388}^{o}})=15D\times 0.612 = 0.9187$
(Here, ${{52.2388}^{o}}=\dfrac{{{104.5}^{o}}}{2}$ )
- The dipole moment caused by the right hydrogen in water molecule = $1.5D\times \cos ({{52.2388}^{o}})=15D\times 0.612 = 0.9187$
(Here, ${{52.2388}^{o}}=\dfrac{{{104.5}^{o}}}{2}$ )
Therefore the net dipole moment of the water molecule = $0.9187 + 0.9187 = 1.837 D$.
Note: The unit to measure dipole moment of the molecules is D (Debye). The dipole moment for linear molecules like beryllium difluoride are 0. Because the dipole moment caused by individual fluorine atoms is zero.
Complete answer:
- In the question they asked how we can calculate the dipole moment of water.
- There is a formula to calculate the dipole moment and it is as follows.
\[\text{Dipole moment (}\mu \text{) = charge (Q) }\times \text{ distance of separation (r)}\]
- Now coming to the calculation of the dipole moment of the water molecule.
- We know that the electrons are localized around the oxygen atom in the water molecule.
- The localization of electrons is due to the high electronegativity of the central oxygen atom in water molecules.
- Due to the presence of lone pairs of electrons on the oxygen molecule the shape of the molecule is going to be a bent shape.
- The shape and charge separation in the water can be seen in the following picture.
- The bond angle which is present in water is 104.5$^{o}$ .
- The individual bond moment of each hydrogen-oxygen bond is 1.5 D.
- There are two hydrogen in water molecules, the two hydrogen creates their individual dipole moments.
- We have to calculate the individual dipole moments and later we have to do the sum to get the dipole moment of the water molecule.
- The dipole moment caused by the left hydrogen in water molecule = $1.5D\times \cos ({{52.2388}^{o}})=15D\times 0.612 = 0.9187$
(Here, ${{52.2388}^{o}}=\dfrac{{{104.5}^{o}}}{2}$ )
- The dipole moment caused by the right hydrogen in water molecule = $1.5D\times \cos ({{52.2388}^{o}})=15D\times 0.612 = 0.9187$
(Here, ${{52.2388}^{o}}=\dfrac{{{104.5}^{o}}}{2}$ )
Therefore the net dipole moment of the water molecule = $0.9187 + 0.9187 = 1.837 D$.
Note: The unit to measure dipole moment of the molecules is D (Debye). The dipole moment for linear molecules like beryllium difluoride are 0. Because the dipole moment caused by individual fluorine atoms is zero.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE