Answer
Verified
428.4k+ views
Hint: The combined gas law looks at the conduct of a steady measure of gas when pressure, volume and additionally temperature is permitted to change.
The most straightforward numerical equation for the combined gas law is:
$K = \dfrac{{PV}}{T}$
In words, the result of pressure duplicated by volume and separated by temperature is a constant.
Be that as it may, the law is typically used to look at previously/after conditions. The combined gas law is communicated as:
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
where:
\[\begin{array}{*{20}{l}}
{{P_i} = {\text{ }}initial{\text{ }}pressure} \\
{{V_i} = {\text{ }}initial{\text{ }}volume} \\
{{T_i} = {\text{ }}initial{\text{ }}absolute{\text{ }}temperature} \\
{{P_f} = {\text{ }}final{\text{ }}pressure} \\
{{V_f} = {\text{ }}final{\text{ }}volume} \\
{{T_f} = {\text{ }}final{\text{ }}absolute{\text{ }}temperature}
\end{array}\]
Complete step by step answer:
Your instrument of decision here will be the joined gas law condition, which resembles this
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
Here
\[{P_1},{\text{ }}{V_1},{\text{ }}and{\text{ }}{T_1}\] speak to the pressure , volume, and temperature of the gas at an underlying state
\[{P_2},{\text{ }}{V_2},{\text{ }}and{\text{ }}{T_2}\] speak to the pressure, volume, and temperature of the gas at a last state
Prior to doing whatever else, ensure that you convert the temperatures from degrees Celsius to Kelvin by utilizing the way that
\[T\left[ {{\text{ }}K{\text{ }}} \right]{\text{ }} = {\text{ }}t\left[ {^ \circ C{\text{ }}} \right]{\text{ }} + {\text{ }}273.15\]
Presently, the thought here is that decreasing the volume of the gas will make the pressure increment. Then again, decreasing the temperature of the gas will make its pressure decrease.
You would thus be able to state that the adjustment in volume and the adjustment in temperature will "complete" one another, for example whichever change is more significant will decide whether the pressure increases or decreases.
Along these lines, improve the consolidated gas law to settle for \[{P_2}\]
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
${P_2} = \dfrac{{{V_1}}}{{{V_2}}} \times \dfrac{{{T_2}}}{{{T_1}}} \times {P_1}$
Plug in your qualities to discover
${{\text{P}}_2} = 2 \times 0.799 \times 1{\text{bar}}$
\[ = 1.6bar\]
Note: I'll leave the appropriate response adjusted to two sig figs, however remember that you just have one significant figure for the underlying pressure of the gas.
As should be obvious, the decrease in volume was more significant than the decrease in temperature; accordingly, the pressure of the gas increased.
The most straightforward numerical equation for the combined gas law is:
$K = \dfrac{{PV}}{T}$
In words, the result of pressure duplicated by volume and separated by temperature is a constant.
Be that as it may, the law is typically used to look at previously/after conditions. The combined gas law is communicated as:
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
where:
\[\begin{array}{*{20}{l}}
{{P_i} = {\text{ }}initial{\text{ }}pressure} \\
{{V_i} = {\text{ }}initial{\text{ }}volume} \\
{{T_i} = {\text{ }}initial{\text{ }}absolute{\text{ }}temperature} \\
{{P_f} = {\text{ }}final{\text{ }}pressure} \\
{{V_f} = {\text{ }}final{\text{ }}volume} \\
{{T_f} = {\text{ }}final{\text{ }}absolute{\text{ }}temperature}
\end{array}\]
Complete step by step answer:
Your instrument of decision here will be the joined gas law condition, which resembles this
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
Here
\[{P_1},{\text{ }}{V_1},{\text{ }}and{\text{ }}{T_1}\] speak to the pressure , volume, and temperature of the gas at an underlying state
\[{P_2},{\text{ }}{V_2},{\text{ }}and{\text{ }}{T_2}\] speak to the pressure, volume, and temperature of the gas at a last state
Prior to doing whatever else, ensure that you convert the temperatures from degrees Celsius to Kelvin by utilizing the way that
\[T\left[ {{\text{ }}K{\text{ }}} \right]{\text{ }} = {\text{ }}t\left[ {^ \circ C{\text{ }}} \right]{\text{ }} + {\text{ }}273.15\]
Presently, the thought here is that decreasing the volume of the gas will make the pressure increment. Then again, decreasing the temperature of the gas will make its pressure decrease.
You would thus be able to state that the adjustment in volume and the adjustment in temperature will "complete" one another, for example whichever change is more significant will decide whether the pressure increases or decreases.
Along these lines, improve the consolidated gas law to settle for \[{P_2}\]
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
${P_2} = \dfrac{{{V_1}}}{{{V_2}}} \times \dfrac{{{T_2}}}{{{T_1}}} \times {P_1}$
Plug in your qualities to discover
${{\text{P}}_2} = 2 \times 0.799 \times 1{\text{bar}}$
\[ = 1.6bar\]
Note: I'll leave the appropriate response adjusted to two sig figs, however remember that you just have one significant figure for the underlying pressure of the gas.
As should be obvious, the decrease in volume was more significant than the decrease in temperature; accordingly, the pressure of the gas increased.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE