Answer
Verified
449.4k+ views
Hint When the temperature of a solid body drops, it decreases in length due to length contraction. We must provide an amount of force that will compensate for the decrease in length of the rod by providing lateral stress on the rod. So we need to calculate this stress by the formula using the coefficient of linear expansion and the young’s modulus of the wire.
In the solution we will be using the following formula,
$\Rightarrow \Delta L = L\alpha \Delta T $ where $ \Delta L $ is the change in length of the rod of length $ L $ , coefficient of linear expansion $ \alpha = {10^{ - 5}}/^\circ C $ due to temperature change $ \Delta T $
$\Rightarrow Y = \dfrac{{TL}}{{A\Delta L}} $ where $ Y $ is the young’s modulus, $ T $ is the tension in the rod, $ A $ is the cross-sectional area of the rod.
Complete step by step answer
We know that when the temperature of the rod drops, its length will decrease according to the equation
$\Rightarrow \Delta L = L\alpha \Delta T $
Substituting the values of $ \alpha = 0.000011 $ and $ \Delta T = (15 - 60) = - 45 $ , we get
$\Rightarrow \Delta L = L(0.000011 \times 45) $
$\Rightarrow 0.000495L $
Now to keep the rod at the same length, we must provide enough force that can increase the length of the rod by the same amount. So, substituting the value of $ \Delta L $ in the equation of young’s modulus $ Y = \dfrac{{TL}}{{A\Delta L}} $ , we get
$\Rightarrow Y = \dfrac{{TL}}{{A0.000495L}} $
Substituting the value of $ A = 1m{m^2} = {10^{ - 6}}{m^2} $ and $ Y = 2 \times {10^{11}} $ ,we get
$\Rightarrow 2 \times {10^{11}} = \dfrac{T}{{{{10}^{ - 6}} \times 0.000495}} $
Solving for $ T $ , we get
$ T = 99\,N $ which corresponds to option (D).
Note
Here we have assumed that the decrease in length occurs almost instantaneously however in reality, the temperature of the rod will decrease at a slow rate and so its length will decrease gradually as well. So, we must increase the force applied on the rod gradually too otherwise we might over-extend the rod in length. While we don’t know the length of the rod, it isn’t needed in the final solution since it cancels out and the force that we must apply is independent of the length of the rod.
In the solution we will be using the following formula,
$\Rightarrow \Delta L = L\alpha \Delta T $ where $ \Delta L $ is the change in length of the rod of length $ L $ , coefficient of linear expansion $ \alpha = {10^{ - 5}}/^\circ C $ due to temperature change $ \Delta T $
$\Rightarrow Y = \dfrac{{TL}}{{A\Delta L}} $ where $ Y $ is the young’s modulus, $ T $ is the tension in the rod, $ A $ is the cross-sectional area of the rod.
Complete step by step answer
We know that when the temperature of the rod drops, its length will decrease according to the equation
$\Rightarrow \Delta L = L\alpha \Delta T $
Substituting the values of $ \alpha = 0.000011 $ and $ \Delta T = (15 - 60) = - 45 $ , we get
$\Rightarrow \Delta L = L(0.000011 \times 45) $
$\Rightarrow 0.000495L $
Now to keep the rod at the same length, we must provide enough force that can increase the length of the rod by the same amount. So, substituting the value of $ \Delta L $ in the equation of young’s modulus $ Y = \dfrac{{TL}}{{A\Delta L}} $ , we get
$\Rightarrow Y = \dfrac{{TL}}{{A0.000495L}} $
Substituting the value of $ A = 1m{m^2} = {10^{ - 6}}{m^2} $ and $ Y = 2 \times {10^{11}} $ ,we get
$\Rightarrow 2 \times {10^{11}} = \dfrac{T}{{{{10}^{ - 6}} \times 0.000495}} $
Solving for $ T $ , we get
$ T = 99\,N $ which corresponds to option (D).
Note
Here we have assumed that the decrease in length occurs almost instantaneously however in reality, the temperature of the rod will decrease at a slow rate and so its length will decrease gradually as well. So, we must increase the force applied on the rod gradually too otherwise we might over-extend the rod in length. While we don’t know the length of the rod, it isn’t needed in the final solution since it cancels out and the force that we must apply is independent of the length of the rod.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE