Answer
Verified
462.9k+ views
Hint:
We can use the relationship between the molality of the solution and lowering of freezing point to determine the required mass.
Complete step by step solution:
We know that the numerical value of freezing point is equal to that of melting point as both are the temperature at which liquid and solid states are in equilibrium with each other. So, we can say that the given lowering in the melting point can be taken as depression in freezing point.
For depression in freezing point of a solvent, we have a relationship between the depression in the freezing point and molality of the solution that can be written as follows:
$\Delta {T_f} = {K_f}m$
Here, $\Delta {T_f}$ is the depression in the freezing point of the solvent, ${K_f}$ is the molal depression constant for the given solvent and $m$ is the molality of the solution.
We can write the molality of a solution in terms of moles of solute $\left( {{n_{solute}}} \right)$ and mass of solvent $\left( {{m_{solvent}}} \right)$ as follows:
$m = \dfrac{{{n_{solute}}}}{{{m_{solvent}}\;in\;kg}}$
Let’s rewrite the above expression in terms of masses only as follows:
$m = \dfrac{{\left( {{m_{solute}}/{M_{solute}}} \right)}}{{{m_{solvent}}\;in\;kg}}$
Here, ${M_{solute}}$ is the molar mass of the solute.
Now we can use the above expression to rewrite equation for depression in the freezing point and molality of the solution as follows:
$\Delta {T_f} = {K_f}\left\{ {\dfrac{{\left( {{m_{solute}}/{M_{solute}}} \right)}}{{{m_{solvent}}\;in\;kg}}} \right\}$
Let’s rearrange this equation for mass of solute:
\[
{K_f}\left\{ {\dfrac{{\left( {{m_{solute}}/{M_{solute}}} \right)}}{{{m_{solvent}}\;in\;kg}}} \right\} = \Delta {T_f}\\
\dfrac{{\left( {{m_{solute}}/{M_{solute}}} \right)}}{{{m_{solvent}}\;in\;kg}} = \dfrac{{\Delta {T_f}}}{{{K_f}}}\\
\left( {{m_{solute}}/{M_{solute}}} \right) = \left( {\dfrac{{\Delta {T_f}}}{{{K_f}}}} \right) \times {m_{solvent}}\;in\;kg\\
{m_{solute}} = \left( {\dfrac{{\Delta {T_f}}}{{{K_f}}}} \right) \times {m_{solvent}}\;in\;kg \times {M_{solute}}
\]
Here, we have ascorbic acid as solute and acetic acid as solvent, so we can write the expression for them:
\[{m_{{C_6}{H_8}{O_6}}} = \left( {\dfrac{{\Delta {T_f}}}{{{K_f}}}} \right) \times {m_{C{H_3}COOH}}\;in\;kg \times {M_{{C_6}{H_8}{O_6}}}\]
Now, let’s convert the units of mass of acetic acid as follows:
$
{m_{C{H_3}COOH}} = 75\;g \times \left( {\dfrac{{1\;kg}}{{1000\;g}}} \right)\\
= {\rm{0}}{\rm{.075}}\;kg
$
Finally, we will calculate the required mass of ascorbic acid by substituting values in the derived expression as follows:
\[
{m_{{C_6}{H_8}{O_6}}} = \left( {\dfrac{{{\rm{1}}{\rm{.5}}\;K}}{{3.9\;K \cdot kg \cdot mo{l^{ - 1}}}}} \right) \times {\rm{0}}{\rm{.075}}\;kg \times 176.12\;g \cdot mo{l^{ - 1}}\\
= {\rm{5}}{\rm{.08}}\;g
\]
Hence, the required mass of ascorbic acid is \[{\rm{5}}{\rm{.08}}\;g\].
Note:
We have to keep in mind that depression in freezing point is a change in temperature so it will be the same on the Kelvin scale as well.
We can use the relationship between the molality of the solution and lowering of freezing point to determine the required mass.
Complete step by step solution:
We know that the numerical value of freezing point is equal to that of melting point as both are the temperature at which liquid and solid states are in equilibrium with each other. So, we can say that the given lowering in the melting point can be taken as depression in freezing point.
For depression in freezing point of a solvent, we have a relationship between the depression in the freezing point and molality of the solution that can be written as follows:
$\Delta {T_f} = {K_f}m$
Here, $\Delta {T_f}$ is the depression in the freezing point of the solvent, ${K_f}$ is the molal depression constant for the given solvent and $m$ is the molality of the solution.
We can write the molality of a solution in terms of moles of solute $\left( {{n_{solute}}} \right)$ and mass of solvent $\left( {{m_{solvent}}} \right)$ as follows:
$m = \dfrac{{{n_{solute}}}}{{{m_{solvent}}\;in\;kg}}$
Let’s rewrite the above expression in terms of masses only as follows:
$m = \dfrac{{\left( {{m_{solute}}/{M_{solute}}} \right)}}{{{m_{solvent}}\;in\;kg}}$
Here, ${M_{solute}}$ is the molar mass of the solute.
Now we can use the above expression to rewrite equation for depression in the freezing point and molality of the solution as follows:
$\Delta {T_f} = {K_f}\left\{ {\dfrac{{\left( {{m_{solute}}/{M_{solute}}} \right)}}{{{m_{solvent}}\;in\;kg}}} \right\}$
Let’s rearrange this equation for mass of solute:
\[
{K_f}\left\{ {\dfrac{{\left( {{m_{solute}}/{M_{solute}}} \right)}}{{{m_{solvent}}\;in\;kg}}} \right\} = \Delta {T_f}\\
\dfrac{{\left( {{m_{solute}}/{M_{solute}}} \right)}}{{{m_{solvent}}\;in\;kg}} = \dfrac{{\Delta {T_f}}}{{{K_f}}}\\
\left( {{m_{solute}}/{M_{solute}}} \right) = \left( {\dfrac{{\Delta {T_f}}}{{{K_f}}}} \right) \times {m_{solvent}}\;in\;kg\\
{m_{solute}} = \left( {\dfrac{{\Delta {T_f}}}{{{K_f}}}} \right) \times {m_{solvent}}\;in\;kg \times {M_{solute}}
\]
Here, we have ascorbic acid as solute and acetic acid as solvent, so we can write the expression for them:
\[{m_{{C_6}{H_8}{O_6}}} = \left( {\dfrac{{\Delta {T_f}}}{{{K_f}}}} \right) \times {m_{C{H_3}COOH}}\;in\;kg \times {M_{{C_6}{H_8}{O_6}}}\]
Now, let’s convert the units of mass of acetic acid as follows:
$
{m_{C{H_3}COOH}} = 75\;g \times \left( {\dfrac{{1\;kg}}{{1000\;g}}} \right)\\
= {\rm{0}}{\rm{.075}}\;kg
$
Finally, we will calculate the required mass of ascorbic acid by substituting values in the derived expression as follows:
\[
{m_{{C_6}{H_8}{O_6}}} = \left( {\dfrac{{{\rm{1}}{\rm{.5}}\;K}}{{3.9\;K \cdot kg \cdot mo{l^{ - 1}}}}} \right) \times {\rm{0}}{\rm{.075}}\;kg \times 176.12\;g \cdot mo{l^{ - 1}}\\
= {\rm{5}}{\rm{.08}}\;g
\]
Hence, the required mass of ascorbic acid is \[{\rm{5}}{\rm{.08}}\;g\].
Note:
We have to keep in mind that depression in freezing point is a change in temperature so it will be the same on the Kelvin scale as well.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE