Answer
Verified
449.7k+ views
Hint: Here, first we have to calculate the mass of mercury using the formula of density, that is, ${\rm{Density}} = \dfrac{{{\rm{Mass}}}}{{{\rm{Volume}}}}$. Then, we have to calculate the moles of mercury. After that, using Avogadro's number we can calculate atoms present in 100 ml of mercury.
Complete step by step answer:
Given, the density of Hg is 13.6 ${\rm{g}}\,{\rm{m}}{{\rm{l}}^{ - 1}}$ and molar mass of Hg is $200\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}$. Now, we have to calculate the mass of mercury using the formula of density.
${\rm{Density}} = \dfrac{{{\rm{Mass}}}}{{{\rm{Volume}}}}$
$ \Rightarrow 13.6\,{\rm{g}}\,{\rm{m}}{{\rm{l}}^{ - 1}} = \dfrac{{{\rm{Mass}}}}{{100\,{\rm{ml}}}}$
$ \Rightarrow {\rm{Mass}} = 1360\,{\rm{g}}$
Therefore, the mass of mercury is 1360 g.
Now, we have to calculate the number of moles of mercury. The formula to calculate number of moles is,
${\rm{Number}}\,{\rm{of}}\,{\rm{moles = }}\dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}$
Now, we have to put mass of mercury (1360 g) and molar mass of mercury ($200\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}$) in the above equation.
$ \Rightarrow {\rm{Number}}\,{\rm{of}}\,{\rm{moles}}\,{\rm{of}}\,{\rm{mercury}} = \dfrac{{1360\,{\rm{g}}}}{{200\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}}} = 6.8\,{\rm{mol}}$
measures the amount of substance present. A mole is the term that defines the number of carbon (C) atoms in 12 g of pure carbon. After so many years of experiment, it has been proved that a mole of anything contains $6.022 \times {10^{23}}$ representative particles. $6.022 \times {10^{23}}$ is known as Avogadro’s number or ${N_A}$.
1 mole of mercury contains =$6.022 \times {10^{23}}$ atoms
6.8 moles of mercury contains$ = 6.8 \times 6.022 \times {10^{23}} = 6.8 \times {N_A}$ atoms.
Therefore, atoms present in 100 ml of mercury are $6.8 \times {N_A}$.
So, the correct answer is Option C.
Note: The number $6.022 \times {10^{23}}$ is named in honor of the Italian physicist Amedeo Avogadro. The Avogadro's number aids in counting very small particles. Different kinds of particles, such as molecules, atoms, ions, electrons are representative particles. One mole of anything consists of $6.022 \times {10^{23}}$ representative particles.
Complete step by step answer:
Given, the density of Hg is 13.6 ${\rm{g}}\,{\rm{m}}{{\rm{l}}^{ - 1}}$ and molar mass of Hg is $200\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}$. Now, we have to calculate the mass of mercury using the formula of density.
${\rm{Density}} = \dfrac{{{\rm{Mass}}}}{{{\rm{Volume}}}}$
$ \Rightarrow 13.6\,{\rm{g}}\,{\rm{m}}{{\rm{l}}^{ - 1}} = \dfrac{{{\rm{Mass}}}}{{100\,{\rm{ml}}}}$
$ \Rightarrow {\rm{Mass}} = 1360\,{\rm{g}}$
Therefore, the mass of mercury is 1360 g.
Now, we have to calculate the number of moles of mercury. The formula to calculate number of moles is,
${\rm{Number}}\,{\rm{of}}\,{\rm{moles = }}\dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}$
Now, we have to put mass of mercury (1360 g) and molar mass of mercury ($200\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}$) in the above equation.
$ \Rightarrow {\rm{Number}}\,{\rm{of}}\,{\rm{moles}}\,{\rm{of}}\,{\rm{mercury}} = \dfrac{{1360\,{\rm{g}}}}{{200\,{\rm{g}}\,{\rm{mo}}{{\rm{l}}^{ - 1}}}} = 6.8\,{\rm{mol}}$
measures the amount of substance present. A mole is the term that defines the number of carbon (C) atoms in 12 g of pure carbon. After so many years of experiment, it has been proved that a mole of anything contains $6.022 \times {10^{23}}$ representative particles. $6.022 \times {10^{23}}$ is known as Avogadro’s number or ${N_A}$.
1 mole of mercury contains =$6.022 \times {10^{23}}$ atoms
6.8 moles of mercury contains$ = 6.8 \times 6.022 \times {10^{23}} = 6.8 \times {N_A}$ atoms.
Therefore, atoms present in 100 ml of mercury are $6.8 \times {N_A}$.
So, the correct answer is Option C.
Note: The number $6.022 \times {10^{23}}$ is named in honor of the Italian physicist Amedeo Avogadro. The Avogadro's number aids in counting very small particles. Different kinds of particles, such as molecules, atoms, ions, electrons are representative particles. One mole of anything consists of $6.022 \times {10^{23}}$ representative particles.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE