![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
How would you calculate the percent relative abundance of \[Cu - 63\] with the mass \[62.9296{\text{ }}g\] and \[Cu - 65\] with the mass \[64.9278{\text{ }}g\] , when the average mass of Cu is \[63.546\] ?
Answer
442.8k+ views
Hint: The relative abundance definition in science is the percentage of a specific isotope that happens in nature. The nuclear mass listed for a component on the periodic table is an average mass of all known isotopes of that component.
Complete step by step answer:
As you most likely are aware, the average nuclear mass of a component is determined by taking the weighted average of the nuclear masses of its normally occurring isotopes.
Step 1: Find the Average Atomic Mass
Basically, a component's normally occurring isotopes will contribute to the average nuclear mass of the component relative to their abundance.
\[avg.{\text{ }}atomic{\text{ }}mass\] =$\sum \left( {{\text{isotope}} \times {\text{abundance}}} \right)$
Step 2: Set Up the Relative Abundance Problem
With regards to the genuine count, it's simpler to use decimal abundances, which are basically percent abundances divided by \[100\] .
Thus, you realize that copper has two naturally occurring isotopes, \[copper - 63\] and \[copper - 65\] . This implies that their respective decimal abundance should amount to give\[1\] .
In the event that you take x to be the decimal bounty of \[copper - 63\] , you can say that the decimal abundance of \[copper - 65\] will be equivalent to \[1 - x\] .
So we can say that:
\[x \cdot 62.9296u + (1 - x) \cdot 64.9278u = 63.546u\]
Step 3: Solve for x to Get the Relative Abundance of the Unknown Isotope.
To finding the value of x we get
\[62.9296 \cdot x - 64.9278 \cdot x = 63.546 - 64.9278\] \[1.9982 \cdot x = 1.3818\]
\[x = \] $\dfrac{{1.38181}}{{0.9982}}$
\[x = {\text{ }}0.69152\]
Step 4: Find percent abundance
This implies that the percent abundances of the two isotopes will be
\[69.152\% \]---->\[^{63}Cu\]
\[30.848\% \]------.\[^{65}Cu\]
Note:
If a mass spectrum of the component was given, the relative rate isotope abundances are generally introduced as a vertical bar graph. The all-out may look as though it exceeds \[100\% ,\] however, that is because the mass spectrum works with relative rate isotope abundances.
Complete step by step answer:
As you most likely are aware, the average nuclear mass of a component is determined by taking the weighted average of the nuclear masses of its normally occurring isotopes.
Step 1: Find the Average Atomic Mass
Basically, a component's normally occurring isotopes will contribute to the average nuclear mass of the component relative to their abundance.
\[avg.{\text{ }}atomic{\text{ }}mass\] =$\sum \left( {{\text{isotope}} \times {\text{abundance}}} \right)$
Step 2: Set Up the Relative Abundance Problem
With regards to the genuine count, it's simpler to use decimal abundances, which are basically percent abundances divided by \[100\] .
Thus, you realize that copper has two naturally occurring isotopes, \[copper - 63\] and \[copper - 65\] . This implies that their respective decimal abundance should amount to give\[1\] .
In the event that you take x to be the decimal bounty of \[copper - 63\] , you can say that the decimal abundance of \[copper - 65\] will be equivalent to \[1 - x\] .
So we can say that:
\[x \cdot 62.9296u + (1 - x) \cdot 64.9278u = 63.546u\]
Step 3: Solve for x to Get the Relative Abundance of the Unknown Isotope.
To finding the value of x we get
\[62.9296 \cdot x - 64.9278 \cdot x = 63.546 - 64.9278\] \[1.9982 \cdot x = 1.3818\]
\[x = \] $\dfrac{{1.38181}}{{0.9982}}$
\[x = {\text{ }}0.69152\]
Step 4: Find percent abundance
This implies that the percent abundances of the two isotopes will be
\[69.152\% \]---->\[^{63}Cu\]
\[30.848\% \]------.\[^{65}Cu\]
Note:
If a mass spectrum of the component was given, the relative rate isotope abundances are generally introduced as a vertical bar graph. The all-out may look as though it exceeds \[100\% ,\] however, that is because the mass spectrum works with relative rate isotope abundances.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Define least count of vernier callipers How do you class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)