
Calculate the standard oxidation potentials of zinc electrode from the following data. The EMF of the cell:
\[{\text{Li|L}}{{\text{i}}^{\text{ + }}}{\text{(0}}{\text{.05 M)||Zn|Z}}{{\text{n}}^{{\text{2 + }}}}{\text{(0}}{\text{.5M),}}{{\text{E}}^{\text{o}}}_{{\text{(L}}{{\text{i}}^{\text{ + }}}{\text{|Li)}}}{\text{ = - 3}}{\text{.045V}}\] is 2.35 V at \[{\text{2}}{{\text{5}}^{\text{o}}}{\text{C}}\].
Answer
574.2k+ views
Hint: The standard reduction potential can be calculated from the standard cell potential using the formula, \[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{{\text{n}}}{\text{log}}\dfrac{{{\text{[product]}}}}{{{\text{[reactant]}}}}\].
Formula used:
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{{\text{n}}}{\text{log}}\dfrac{{{\text{[product]}}}}{{{\text{[reactant]}}}}\]
Here, \[{{\text{E}}_{{\text{cell}}}}\] = EMF of the cell
\[{{\text{E}}^ \circ }_{{\text{cell}}}\] = standard cell potential
n = number of electrons transferred
Complete step by step answer:
We can modify cell representation from the question as follows:
\[{\text{Li|L}}{{\text{i}}^{\text{ + }}}{\text{(0}}{\text{.05 M)||Z}}{{\text{n}}^{{\text{2 + }}}}{\text{(0}}{\text{.5M)|Zn}}\]
From the above cell representation, we know that oxidation is taking place on the left side at the anode (Lithium) and reduction is taking place on the right side at the cathode (Zinc).
Now, we can write the half-cell reactions as follows:
Oxidation half-cell
\[{\text{2Li}} \to 2{\text{L}}{{\text{i}}^{\text{ + }}} + 2{{\text{e}}^{\text{ - }}}\]
\[{{\text{E}}^{\text{o}}}_{{\text{(Li|L}}{{\text{i}}^{\text{ + }}}{\text{)}}}{\text{ = 3}}{\text{.045V}}\]
In the question, we were given the standard reduction potential of lithium. So, we converted it into standard oxidation potential.The standard oxidation potential is equal to the negative of standard reduction potential.
\[{{\text{E}}^{\text{o}}}_{{\text{(L}}{{\text{i}}^{\text{ + }}}{\text{|Li)}}} = - {{\text{E}}^{\text{o}}}_{{\text{(L}}{{\text{i}}^{\text{ + }}}{\text{|Li)}}}\]
Reduction half-cell:
\[{\text{Z}}{{\text{n}}^{{\text{2 + }}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {\text{Zn}}\]
Here, \[{{\text{E}}^{\text{o}}}_{{\text{(Z}}{{\text{n}}^{{\text{2 + }}}}{\text{/Zn)}}}\]= Standard reduction potential
\[{{\text{E}}^{\text{o}}}_{{\text{(Zn/Z}}{{\text{n}}^{{\text{2 + }}}}{\text{)}}}\]= Standard oxidation potential
Net cell reaction:
\[{\text{2Li + Z}}{{\text{n}}^{{\text{2 + }}}} \to 2{\text{L}}{{\text{i}}^{\text{ + }}} + {\text{Zn}}\]
Here, n=2 as two electrons participate in this redox reaction.
Now, we know that
\[{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}\left( {{\text{anode}}} \right){\text{ - }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}\left( {{\text{cathode}}} \right)\]
Here, SOP=standard oxidation potential
To find the standard oxidation potential of the cathode (Zinc), we have to calculate the standard cell potential first (\[{{\text{E}}^{\text{o}}}_{{\text{cell}}}\]).
Standard cell potential can be calculated by the Nernst equation which is given as follows:
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{{\text{n}}}{\text{log}}\dfrac{{\left[ {{\text{product}}} \right]}}{{\left[ {{\text{reactant}}} \right]}}\]
By substituting the value we get:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{2}{\text{log}}\dfrac{{{{\left[ {{\text{L}}{{\text{i}}^{\text{ + }}}} \right]}^2}}}{{\left[ {{\text{Z}}{{\text{n}}^{{\text{2 + }}}}} \right]}}\]
The concentration of product and reactant is given in the question. Substitute the concentrations in the formula.
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{2}{\text{log}}\dfrac{{{{\left[ {{\text{0}}{\text{.05}}} \right]}^2}}}{{\left[ {{\text{0}}{\text{.5}}} \right]}}\]
Now, by solving the right side of the equation, we get:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - 0}}{\text{.0295log}}\dfrac{{2.5 \times {{10}^{ - 3}}}}{{\left[ {{\text{0}}{\text{.5}}} \right]}}\]
By dividing the numerical value associated with the log term we get:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - 0}}{\text{.0295 log}}\left( {{\text{5}} \times {{10}^{ - 3}}} \right)\]
By takin the log of $0.005$ we get:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - 0}}{\text{.0295 }}\left( {{\text{ - 2}}{\text{.3}}} \right)\]
By multiplying the numerical value on the right side of the equation:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}} + {\text{ 0}}{\text{.068}}\]
By taking the numerical value on left side we will get the standard cell potential:
\[{\text{2}}{\text{.35 - 0}}{\text{.068 = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}\]
By subtracting the value we get:
\[{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ = 2}}{\text{.282 V}}\]
We know that the standard cell potential is given as :
\[{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(anode) - }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(cathode)}}\]
By substituting the value we get:
\[{\text{2}}{\text{.282V = 3}}{\text{.045V - }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(cathode)}}\]
By taking the numerical value on one side:
\[{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(cathode) = 3}}{\text{.045V - 2}}{\text{.282V}}\]
By subtracting we get:
\[{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(cathode) = 0}}{\text{.763V}}\]
Therefore, the standard oxidation potential of the Zinc electrode for the following data is $0.763$ V.
Note:
Standard reduction potential is always in negative and standard oxidation potential is always positive.
In the Nernst equation, the product and reactant are finalized from the net cell reaction and not the cell representation.
Formula used:
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{{\text{n}}}{\text{log}}\dfrac{{{\text{[product]}}}}{{{\text{[reactant]}}}}\]
Here, \[{{\text{E}}_{{\text{cell}}}}\] = EMF of the cell
\[{{\text{E}}^ \circ }_{{\text{cell}}}\] = standard cell potential
n = number of electrons transferred
Complete step by step answer:
We can modify cell representation from the question as follows:
\[{\text{Li|L}}{{\text{i}}^{\text{ + }}}{\text{(0}}{\text{.05 M)||Z}}{{\text{n}}^{{\text{2 + }}}}{\text{(0}}{\text{.5M)|Zn}}\]
From the above cell representation, we know that oxidation is taking place on the left side at the anode (Lithium) and reduction is taking place on the right side at the cathode (Zinc).
Now, we can write the half-cell reactions as follows:
Oxidation half-cell
\[{\text{2Li}} \to 2{\text{L}}{{\text{i}}^{\text{ + }}} + 2{{\text{e}}^{\text{ - }}}\]
\[{{\text{E}}^{\text{o}}}_{{\text{(Li|L}}{{\text{i}}^{\text{ + }}}{\text{)}}}{\text{ = 3}}{\text{.045V}}\]
In the question, we were given the standard reduction potential of lithium. So, we converted it into standard oxidation potential.The standard oxidation potential is equal to the negative of standard reduction potential.
\[{{\text{E}}^{\text{o}}}_{{\text{(L}}{{\text{i}}^{\text{ + }}}{\text{|Li)}}} = - {{\text{E}}^{\text{o}}}_{{\text{(L}}{{\text{i}}^{\text{ + }}}{\text{|Li)}}}\]
Reduction half-cell:
\[{\text{Z}}{{\text{n}}^{{\text{2 + }}}}{\text{ + 2}}{{\text{e}}^{\text{ - }}} \to {\text{Zn}}\]
Here, \[{{\text{E}}^{\text{o}}}_{{\text{(Z}}{{\text{n}}^{{\text{2 + }}}}{\text{/Zn)}}}\]= Standard reduction potential
\[{{\text{E}}^{\text{o}}}_{{\text{(Zn/Z}}{{\text{n}}^{{\text{2 + }}}}{\text{)}}}\]= Standard oxidation potential
Net cell reaction:
\[{\text{2Li + Z}}{{\text{n}}^{{\text{2 + }}}} \to 2{\text{L}}{{\text{i}}^{\text{ + }}} + {\text{Zn}}\]
Here, n=2 as two electrons participate in this redox reaction.
Now, we know that
\[{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}\left( {{\text{anode}}} \right){\text{ - }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}\left( {{\text{cathode}}} \right)\]
Here, SOP=standard oxidation potential
To find the standard oxidation potential of the cathode (Zinc), we have to calculate the standard cell potential first (\[{{\text{E}}^{\text{o}}}_{{\text{cell}}}\]).
Standard cell potential can be calculated by the Nernst equation which is given as follows:
\[{{\text{E}}_{{\text{cell}}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{{\text{n}}}{\text{log}}\dfrac{{\left[ {{\text{product}}} \right]}}{{\left[ {{\text{reactant}}} \right]}}\]
By substituting the value we get:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{2}{\text{log}}\dfrac{{{{\left[ {{\text{L}}{{\text{i}}^{\text{ + }}}} \right]}^2}}}{{\left[ {{\text{Z}}{{\text{n}}^{{\text{2 + }}}}} \right]}}\]
The concentration of product and reactant is given in the question. Substitute the concentrations in the formula.
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - }}\dfrac{{{\text{0}}{\text{.0591}}}}{2}{\text{log}}\dfrac{{{{\left[ {{\text{0}}{\text{.05}}} \right]}^2}}}{{\left[ {{\text{0}}{\text{.5}}} \right]}}\]
Now, by solving the right side of the equation, we get:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - 0}}{\text{.0295log}}\dfrac{{2.5 \times {{10}^{ - 3}}}}{{\left[ {{\text{0}}{\text{.5}}} \right]}}\]
By dividing the numerical value associated with the log term we get:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - 0}}{\text{.0295 log}}\left( {{\text{5}} \times {{10}^{ - 3}}} \right)\]
By takin the log of $0.005$ we get:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ - 0}}{\text{.0295 }}\left( {{\text{ - 2}}{\text{.3}}} \right)\]
By multiplying the numerical value on the right side of the equation:
\[{\text{2}}{\text{.35V = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}} + {\text{ 0}}{\text{.068}}\]
By taking the numerical value on left side we will get the standard cell potential:
\[{\text{2}}{\text{.35 - 0}}{\text{.068 = }}{{\text{E}}^{\text{o}}}_{{\text{cell}}}\]
By subtracting the value we get:
\[{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ = 2}}{\text{.282 V}}\]
We know that the standard cell potential is given as :
\[{{\text{E}}^{\text{o}}}_{{\text{cell}}}{\text{ = }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(anode) - }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(cathode)}}\]
By substituting the value we get:
\[{\text{2}}{\text{.282V = 3}}{\text{.045V - }}{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(cathode)}}\]
By taking the numerical value on one side:
\[{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(cathode) = 3}}{\text{.045V - 2}}{\text{.282V}}\]
By subtracting we get:
\[{{\text{E}}^{\text{o}}}_{{\text{SOP}}}{\text{(cathode) = 0}}{\text{.763V}}\]
Therefore, the standard oxidation potential of the Zinc electrode for the following data is $0.763$ V.
Note:
Standard reduction potential is always in negative and standard oxidation potential is always positive.
In the Nernst equation, the product and reactant are finalized from the net cell reaction and not the cell representation.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

