Answer
Verified
465k+ views
Hint: Before attempting this question one should have prior knowledge about the molar gas constant and also remember to use the ideal gas equation i.e. PV = nRT, using these instructions will help you to approach towards the solution to the problem.
Complete step by step solution: According to the question the first pressure which is given in atm while the volume in CC. therefore, when the pressure is expressed in atmosphere [atm] and volume in CC.
Then, the value of P & V are taken as:-
P=1atm V=22400cc
The ideal gas equation is given as: PV=nRT
From here the value of R is \[R = \dfrac{{PV}}{{nT}}\]
Where P is pressure, V is volume, n is no. of moles, T is temperature.
So, \[R = \dfrac{{PV}}{{nT}}\] (equation 1)
P is taken as = 1atm
V is taken as = 22400cc and T is in Kelvin which means the value of T will be 273k and n=1.
Equating these value in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
$ \Rightarrow $$R = \dfrac{{1 \times 22400}}{{1 \times 273}}$= $\dfrac{{22400}}{{273}} = 82.1ccatm{K^{ - 1}}mo{l^{ - 1}}$
2) Hence, the pressure is given in terms of torr and volume in cc
So, the value of pressure in torr is=760 torr, and volume in cc is = 22400cc
T=273k and n=1.
Similarly, equating these values in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
$ \Rightarrow $\[R = \dfrac{{760 \times 22400}}{{1 \times 273}}\]
$ \Rightarrow $$R = \dfrac{{17024000}}{{273}}$
So, R = 62360 torr cc ${K^{ - 1}}mo{l^{ - 1}}$
3) Now, the pressure is given in kilo pascal and volume in litre.
As we known, the value of pressure in kilopascal is 101.3KPa and volume is= 22.4litre, while T and h remain same as above two equations
T=273K n=1
Again, equating these values in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
\[R = \dfrac{{101.3 \times 22.4}}{{1 \times 273}}\]=$\dfrac{{2269.12}}{{273}}$= $ = 8.311$
$ \Rightarrow $R= 8.31 K pa liter \[{K^{ - 1}}mo{l^{ - 1}}\]
Note: Molar gas constant or [R] is simply a physical constant that exists in the general gas law formulation. The constant, however, is the same for all gases, since one mole or one molecular weight in grams is the mass of gas being measured.
So, for one mole, $\dfrac{{PV}}{T} = R$ and the value of R is$8.314 mo{l^{ - 1}}{K^{ - 1}}$.
Complete step by step solution: According to the question the first pressure which is given in atm while the volume in CC. therefore, when the pressure is expressed in atmosphere [atm] and volume in CC.
Then, the value of P & V are taken as:-
P=1atm V=22400cc
The ideal gas equation is given as: PV=nRT
From here the value of R is \[R = \dfrac{{PV}}{{nT}}\]
Where P is pressure, V is volume, n is no. of moles, T is temperature.
So, \[R = \dfrac{{PV}}{{nT}}\] (equation 1)
P is taken as = 1atm
V is taken as = 22400cc and T is in Kelvin which means the value of T will be 273k and n=1.
Equating these value in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
$ \Rightarrow $$R = \dfrac{{1 \times 22400}}{{1 \times 273}}$= $\dfrac{{22400}}{{273}} = 82.1ccatm{K^{ - 1}}mo{l^{ - 1}}$
2) Hence, the pressure is given in terms of torr and volume in cc
So, the value of pressure in torr is=760 torr, and volume in cc is = 22400cc
T=273k and n=1.
Similarly, equating these values in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
$ \Rightarrow $\[R = \dfrac{{760 \times 22400}}{{1 \times 273}}\]
$ \Rightarrow $$R = \dfrac{{17024000}}{{273}}$
So, R = 62360 torr cc ${K^{ - 1}}mo{l^{ - 1}}$
3) Now, the pressure is given in kilo pascal and volume in litre.
As we known, the value of pressure in kilopascal is 101.3KPa and volume is= 22.4litre, while T and h remain same as above two equations
T=273K n=1
Again, equating these values in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
\[R = \dfrac{{101.3 \times 22.4}}{{1 \times 273}}\]=$\dfrac{{2269.12}}{{273}}$= $ = 8.311$
$ \Rightarrow $R= 8.31 K pa liter \[{K^{ - 1}}mo{l^{ - 1}}\]
Note: Molar gas constant or [R] is simply a physical constant that exists in the general gas law formulation. The constant, however, is the same for all gases, since one mole or one molecular weight in grams is the mass of gas being measured.
So, for one mole, $\dfrac{{PV}}{T} = R$ and the value of R is$8.314 mo{l^{ - 1}}{K^{ - 1}}$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE